Advanced SearchSearch Tips
Classification of Microarray Gene Expression Data by MultiBlock Dimension Reduction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Classification of Microarray Gene Expression Data by MultiBlock Dimension Reduction
Oh, Mi-Ra; Kim, Seo-Young; Kim, Kyung-Sook; Baek, Jang-Sun; Son, Young-Sook;
  PDF(new window)
In this paper, we applied the multiblock dimension reduction methods to the classification of tumor based on microarray gene expressions data. This procedure involves clustering selected genes, multiblock dimension reduction and classification using linear discrimination analysis and quadratic discrimination analysis.
Principal component analysis;partial least square method;linear discrimination analysis;quadratic discrimination analysis;
 Cited by
Alan, U, Barkai, N., Notterman, D.A., Gish, K., Mack, S.Y.D. and Levine, J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, USA. Vol. 96. 6745-6750

Antoniadis, A., Larnber-Lacroix, S. and Leblance, F. (2003). Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics. Vol. 19. 563-570 crossref(new window)

Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M. and Yakhini, Z. (2000). Tissue Classification with Gene Expression Profiles. Journal of Computational Biology. Vol. 7. 559-584 crossref(new window)

Dudoit, S., Fridlyand, J. and Speed, T.P. (2000). Comparison of discrimination methods for the classification of tumors using gene expression data. Technical Report 576. Department of Statistics, University of California, Berkeley

Fraley, C. and Raftery, A.E. (2002). Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association. Vol. 94. 611-631

Furey, T.S., Cristianini, N., Duffy, N., Shummer, B.M. and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. Vol. 16. 906-914 crossref(new window)

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J, Coller, H., Loh, M., Downing, J, Caligiuri, M., Bloomfield, C. and Lander, E. (1999). Molecular Classification of Cancer: Class discovery and class prediction by gene expression monitoring, Science. Vol. 286. 531-537 crossref(new window)

Johnson, R.A. and Wichern, D.W. (1998). Applied Multivariate Statistical Analvsis(4th ed.), Pretice Hall

Nguyen, D.V. and Rocke, D.M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. Vol. 18. 39-50 crossref(new window)

Singh, D., Febbo, P.G., Ross, K, Jackson, D.G., Manola, J, Ladd, C., Tamayo, P., Renshaw, A.A., D'Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R and Sellers, W.R (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. Vol. 1. 203-209 crossref(new window)

van 't Veer, L.J, Dai, H., van de Vijver, M.J, He, YD., Hart, A.A.M., Mao, M., Peterse, H.L., van der Kooy, K., Marton. M.J, Witteveen, A.T., Schreiber, G.J, Kerkhoven, RM., Roberts, C., Linsley, P.S., Bernards, R and Friend, S.H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature. Vol. 405. 530-536

Weston, J, Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V. (2001). Feature selection for SVMs. Advances in Neural Information Processing Systems.. Vol. 13. 668-674

Wold, S., Geladt, P., Esbensen, K. and Ohman, J. (1987a). Multiway Principal Components and PLS Analysis. Journal of Chemometrics. Vol. 1. 41-56 crossref(new window)

Wold, S., Hellberg, S., Lundstedt, T., Sjostrom, M. and Wold, H. (1987b). PLS modeling with latent variable in two or more dimensions. Proc. Symp. on PLS Model Building: Theory and Application. Frankfurt am Main. also Tech. Rep., Department of Organic Chemistry, Umea University