Advanced SearchSearch Tips
Comparison of Bootstrap Methods for LAD Estimator in AR(1) Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Bootstrap Methods for LAD Estimator in AR(1) Model
Kang, Kee-Hoon; Shin, Key-Il;
  PDF(new window)
It has been shown that LAD estimates are more efficient than LS estimates when the error distribution is double exponential in AR(1) model. In order to explore the performance of LAD estimates one can use bootstrap approaches. In this paper we consider the efficiencies of bootstrap methods when we apply LAD estimates with highly variable data. Monte Carlo simulation results are given for comparing generalized bootstrap, stationary bootstrap and threshold bootstrap methods.
Least square estimator;stationary bootstrap;threshold bootstrap;
 Cited by
Berkowitz, J. and Kilian, L. (2000). Recent developments in bootstrapping time series. Econometrics Reviews, Vol. 19, 1-48

Cao, R. (1999). An overview of bootstrap mothods for estimating and predicting in time series. Test, Vol. 8, 95-116 crossref(new window)

Efron, B and Tibshirani, R.J. (1993). An introduction to the Bootstrap, Chapman & Hall, New York

HardIe, W., Horowitz, J. and Kreiss, J.P. (2003). Bootstrap methods for time series. International Statistical Review, Vol. 71, 435-460

Kim, Y, Willemain, T., Haddock, J. and Runger, G. (1993). The threshold bootstrap: A new approach to simulation output analysis. In: Evans, G.W., Mollaghasemi, M., Russel, E.C., Biles, W.E. (Eds.) , Proceedings: 1993 Winter Simulation Conference, 498-502

Li, H. and Maddala, G. (1996). Bootstrapping time series models. Econometric Theory, Vol. 15, 115-195

Shin, K-I., Kang, H.-J. and Sim, H. (2002). A new proof of efficient of LAD estimation in an autoregressive process. Journal of the Korean Statistical Society, Vol. 31, 121-128

Park, D.S., Kim, Y.B., Shin, K.-I. and Willemain, T.R. (2001). Simulation output analysis using the threshold bootstrap. European journal of Operational Research, Vol. 134, 17-28 crossref(new window)

Politis, D.N. and Romano, J.P. (1994). The stationary bootstrap. Journal of the American Statistical Association, Vol. 89, 1303-1313 crossref(new window)