JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Graphical Methods for Hierarchical Log-Linear Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Graphical Methods for Hierarchical Log-Linear Models
Hong, Chong-Sun; Lee, Ui-Ki;
  PDF(new window)
 Abstract
Most graphical methods for categorical data can describe the structure of data and represent a measure of association among categorical variables. Among them the polyhedron plot represents sequential relationships among hierarchical log-linear models for a multidimensional contingency table. This kind of plot could be explored to describe the differences among sequential models. In this paper we suggest graphical methods, containing all the information, that reflect the relationship among all log-linear models in a certain hierarchical structure. We use the ideas of a correlation diagram.
 Keywords
Goodness of fit;hierarchical model;likelihood ratio statistics;log-linear model;measure of association;odds ratio;
 Language
English
 Cited by
 References
1.
Barrowman, N.J. and Myers, R.A. (2000). Still more spawner-recruitment curves: the hockey stick and its generalizations. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 57, 665-676 crossref(new window)

2.
Barrowman, N.J. and Myers, R.A. (2003). Raindrop plots: a new way to display collections of likelihoods and distributions. American Statistician, Vol. 57, 268-274 crossref(new window)

3.
Becker, R.A., Cleveland, W.S., and Shyu, M.J. (1996). The visual design and control of trellis display. Journal of Computational and Graphical Statistics. Vol. 6(2), 123-155

4.
Bishop, Y.M.M., Fienberg, S.E., and Holland P.W. (1975). Discrete Multivariate Analysis, MIT Press

5.
Christensen, R. (1990). Log-Linear Models and Logistic Regression, Springer, New York

6.
Cleveland, W.S. and McGill, R. (1984), Graphical perception: theory, experimentation, and application to the development of graphical methods. Journal of American Statistical Association, Vol. 79(387), 531-554 crossref(new window)

7.
Cohen, A. (1980). On the graphical display of the significant components in a two-way contingency table. Communications in Statistics-Theory and Methods, Vol. 9, 1025-1041 crossref(new window)

8.
Corsten, L.C.A. and Gabriel, K.R. (1976). Graphical exploration in comparing variance matrice. Biometrics, Vol. 32, 851-863 crossref(new window)

9.
Darroch, J.N., Lauritzen, S.L., and Speed, T.P. (1980). Markov-fields and log-linear models for contingency tables. Annals of Statistics, Vol. 8, 522-39 crossref(new window)

10.
Doi, M., Nakamura, T., and Yamamoto, E. (2001). Conservative tendency of the crude odds ratio. Journal of Japan Statistical Society, Vol. 31(1), 53-65 crossref(new window)

11.
Fienberg, S.E. (1968). The Estimation of Exponential Probabilities in Two-way Contingency Tables, Ph. D. Thesis, Department of Statistics, Harvard University

12.
Fienberg, S.E. and Gilbert, J.P. (1970). The geometry of a $2{\times}2$ contingency tables. Journal of American Statistical Association, Vol. 65, 694-701 crossref(new window)

13.
Fienberg, S.E. (1975). Perspective canada as a social report. Social Indicators Research, Vol. 2, 154-174

14.
Fienberg, S.E. (1983). The Analysis of Cross-Classified Categorical Data, MIT Press

15.
Friendly, M. (1991). The SAS System for Statistical Graphics, SAS Institute Inc

16.
Friendly, M. (1992). Mosaic displays for log-linear models, proceedings of the statistical graphics section. American Statistical Association, 61-68

17.
Friendly, M. (1994a). Mosaic displays for multi-way contingency tables. Journal of American Statistical Association, Vol. 89, 190-200 crossref(new window)

18.
Friendly, M. (1994b). SAS/IML graphics for fourfold displays. Observations, Vol. 3(4), 47-56

19.
Gabriel, K.R. (1971). The biplot graphical display of matrices with applications to principal component analysis. Biometrika, Vol. 58, 453-467 crossref(new window)

20.
Gay, D.M. (1983). Algorithm 611. subroutines for unconstrained minimization using a model / trust-region approach. ACM Transactions on Mathematical Software, Vol. 9, 503-524 crossref(new window)

21.
Gay, D.M. (1984). A trust region approach to linearly constrained optimization, Numerical Analysis, Proceedings, Dundee 1983, ed. F.A. Lootsma, Berlin: Springer, 171-189

22.
Hartigan, J.A. and Kleiner, B. (1981). Mosaic for contingency tables. Com -puter Science and Statistics, Proceedings of the 13th Symposium on the Interface, ED. W. F. Eddy, New York: Springer-Verlag, 268-273

23.
Hartigan, J.A. and Kleiner, B. (1984). A mosaic of the television ratings. American Statisticians, Vol. 38, 32-35 crossref(new window)

24.
Hong, C.S., Choi. H.J., and Oh, M.G. (1999). Geometric descriptions for hierarchical log-linear models, InterStat, September, 1999. InterStat on the Internet

25.
Li, X., Buechner, J.M., Tarwater, P.M., and Munoz, A. (2003). A diamond -shaped equiponderant graphical display of the effects of two categorical predictors on continuous outcomes. American Statisticians, Vol. 57, 193-199 crossref(new window)

26.
Ries, P.N. and Smith, H. (1963). The use of chi-square for preference testing In multidimensional problems. Chemical Engineering Progress, Vol. 59, 39-43

27.
Trosset. M.W. (2005). Visualizing correlation. Journal of Computational and Graphical Statistics, Vol. 14, 1-19 crossref(new window)

28.
Tufte, E.R. (1983). The Visual Display of Quantitative Information, Graphics Press. Cheshire, Connecticut

29.
Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley Publishing Company

30.
Wilkinson, L. (1999). The Grammar of Graphics, Springer, New York

31.
Yamamoto, E. and Doi, M. (2001) Noncollapsibility of common odds ratios without/with confounding. Bulletin of The 53rd Session of the International Statistical Institute, Book 3, 39-40