Advanced SearchSearch Tips
Weighted LS-SVM Regression for Right Censored Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Weighted LS-SVM Regression for Right Censored Data
Kim, Dae-Hak; Jeong, Hyeong-Chul;
  PDF(new window)
In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.
Regression model;right censoring;support vector machine;
 Cited by
Fygenson, M and Zhou, M. (1992). Modifying the Koul, Susarla and Van Ryzin estimator for linear regression models with right censoring. Statistics & Probability Letters, Vol. 13, 295-299 crossref(new window)

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Joumal of American Statistical Association, Vol. 66, 484-491

Koul, H., Susarla, V. and Van Ryzin J, (1981). Regression Analysis with Randomly Right Censored Data. The Annals of Statistics, Vol. 9, 1276-1288 crossref(new window)

Leurgans, S. (1987). Linear models, random censoring and synthetic data. Biometrika, Vol. 74, 301-9 crossref(new window)

Mercer, J. (1909). Functions of Positive and Negative Type and Their Connection with Theory of Integral Equations. Philosophical Transactions of Royal Society, A, 415-446

Miller, R. and Halpern, J. (1982). Regression with Censored Data. Biometrika, Vol. 69, 521-531 crossref(new window)

Suykens, J.A.K. and Vanderwalle, J. (1999). Least Square Support Vector Machine Classifier. Neural Processing Letters, Vol. 9, 293-300 crossref(new window)

Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York

Vapnik, V.N. (1998). Statistical Learning Theory, Springer, New York

Zhou, M (1992). M-estimation in Censored Linear Models. Biometrika, Vol. 79, 837-841 crossref(new window)