JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data
Kim, Hee-Jeong; Kim, Yong-Dai; Son, Young-Sook;
  PDF(new window)
 Abstract
In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.
 Keywords
Current status data;Dirichlet process prior;MCMC algorithm;Bayesian estimation;nonparametric maximum likelihood estimation;
 Language
Korean
 Cited by
 References
1.
Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling. The Annals of Statistics, 22, 1763-1786 crossref(new window)

2.
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209-230 crossref(new window)

3.
Ghosh, J. K. and Ramamoorthi. R. V. (2003). Bayesian Nonparametrics. Springer, New York

4.
Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd ed, John Wiley & Sons, New York

5.
Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data. John Wiley & Sons, New York

6.
Nelson, W. B. (1982). Applied Life Data Analysis. John Wiley & Sons, New York

7.
Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica, 4, 639-650