Advanced SearchSearch Tips
Statistical Method of Ranking Candidate Genes for the Biomarker
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Statistical Method of Ranking Candidate Genes for the Biomarker
Kim, Byung-Soo; Kim, In-Young; Lee, Sun-Ho; Rha, Sun-Young;
  PDF(new window)
Receive operating characteristic (ROC) approach can be employed to rank candidate genes from a microarray experiment, in particular, for the biomarker development with the purpose of population screening of a cancer. In the cancer microarray experiment based on n patients the researcher often wants to compare the tumor tissue with the normal tissue within the same individual using a common reference RNA. Ideally, this experiment produces n pairs of microarray data. However, it is often the case that there are missing values either in the normal or tumor tissue data. Practically, we have pairs of complete observations, "normal only" and "tumor only" data for the microarray. We refer to this data set as a mixed data set. We develop a ROC approach on the mixed data set to rank candidate genes for the biomarker development for the colorectal cancer screening. It turns out that the correlation between two ranks in terms of ROC and t statistics based on the top 50 genes of ROC rank is less than 0.6. This result indicates that employing a right approach of ranking candidate genes for the biomarker development is important for the allocation of resources.
Biomarker;microarray;mixed data set;ranking genes;receiver operating characteristic (ROC) curve;
 Cited by
Hardwick, J. C., Van Den Brink, G. R., Bleuming, S. A., Ballester, I., Van Den Brande, J. M., Keller, J. J., Offerhaus, G. J., Van Deventer, S. J. and Peppelenbosch, M. P. (2004). Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastmentemlogy, 126, 111-121

Kim, B. S., Kim, I., Lee, S., Kim, S., Rha, S. Y. and Chung, H. C. (2005). Statistical methods of translating microarray data into clinically relevant diagnostic information in colorectal cancer. Bioinformatics, 21, 517-528 crossref(new window)

Li, M., Lin, Y.M., Hasegawa, S., Shimokawa, T., Murata, K., Kameyama, M., Ishikawa, O., Katagiri, T., Tsunoda, T., Nakamura, Y. and Furukawa, Y. (2004). Genes associated with liver metastasis of colon cancer identified by genome-wide cDNA microarray. International Journal of Oncology, 24, 305-312

Mao, J. D., Wu, P., Xia, X. H., Hu, J. Q., Huang, W. B. and Xu, G. Q. (2005). Correlation between expression of gastrin, somatostatin and cell apoptosis regulation gene bcl-2/bax in large intestine carcinoma. World Journal of Gastroenterology, 11, 721-725 crossref(new window)

Ottaiano, A., Palma, A. di., Napolitano, M., Pisano, C., Pignata, S., Tatangelo, F., Botti, G., Acquaviva, A. M., Castello, G., Ascierto, P. A., Iaffaioli, R. V. and Scala, S. (2004). Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunolgy, Immunotherapy, 54, 781-791

Park, C. H., Jeong, H. J., Jung, J. J., Lee, G. Y, Kim, S. C., Kim, T. S., Yang, S. H., Chung, H. C. and Rha, S. Y. (2004). Fabrication of high quality cDNA microarray using a small amount of cDNA, International Journal of Molecular Medicine, 13,675-679

Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press, New York

Pepe, M. S., Etzioni, R., Feng, Z., Potter, J., Thompson, M. L., Thornquist, M., Winget, M. and Yasui, Y. (2001). Phases of biomarker development for early detection of cancer. Journal of the National Cancer Institute, 93, 1054-1061 crossref(new window)

Pepe, M. S., Longton, G. M., Anderson, G. L. and Schummer, M. (2003). Selecting differentially expressed genes from microarray experiments. Biometrics, 59, 133-142 crossref(new window)

Stulik, J., Koupilova, K., Osterreicher, J., Knizek, J., Macela, A., Bures, J., Jandik, P., Langr, F., Dedic, K. and Jungblut, P.R. (1999). Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophoresis, 20, 3638-3646 crossref(new window)

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Research, 30, e15 crossref(new window)