JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Iterative Support Vector Quantile Regression for Censored Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Iterative Support Vector Quantile Regression for Censored Data
Shim, Joo-Yong; Hong, Dug-Hun; Kim, Dal-Ho; Hwang, Chang-Ha;
  PDF(new window)
 Abstract
In this paper we propose support vector quantile regression (SVQR) for randomly right censored data. The proposed procedure basically utilizes iterative method based on the empirical distribution functions of the censored times and the sample quantiles of the observed variables, and applies support vector regression for the estimation of the quantile function. Experimental results we then presented to indicate the performance of the proposed procedure.
 Keywords
Censoring;empirical distribution function;quantile regression;support vector regression;
 Language
English
 Cited by
 References
1.
Heuchenne, C and Van Keilegom, I. (2005). Nonlinear Regression with Censored Data. Technical Report 520, Universite catholique de Louvain

2.
Hwang, C. and Shim, J. (2005). A simple quantile regression via support vector machine. Lecture Notes in Computer Science, 3610, 512-520

3.
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481 crossref(new window)

4.
Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50 crossref(new window)

5.
Lindgren, A. (1997). Quantile regression with censored data using generalized $L_1$ minimization. Computational Statistics & Data Analysis, 23, 509-524 crossref(new window)

6.
Mercer, J. (1909). Functions of positive and negative type, and their connection with theory of integral equations. Philosophical Transactions of the Royal Society, Ser. A, 209, 415-446 crossref(new window)

7.
Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics, 32, 143-155 crossref(new window)

8.
Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics & Data Analysis, 50, 813-829 crossref(new window)