JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Penalized Likelihood Regression with Negative Binomial Data with Unknown Shape Parameter
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Penalized Likelihood Regression with Negative Binomial Data with Unknown Shape Parameter
Kim, Young-Ju;
  PDF(new window)
 Abstract
We consider penalized likelihood regression with data from the negative binomial distribution with unknown shape parameter. Smoothing parameter selection and asymptotically efficient low dimensional approximations are employed for negative binomial data along with shape parameter estimation through several different algorithms.
 Keywords
Negative binomial;penalized likelihood;shape parameter;smoothing parameter;
 Language
Korean
 Cited by
 References
1.
Gu, C. (1992). Cross-validating non-Gaussian data. Journal of Computational and Graphical Statistics, 1, 169-179 crossref(new window)

2.
Gu, C. (2002). Smoothing Spline ANOVA Models. Springer-Verlag, New York

3.
Gu, C. and Kim, Y.-J. (2002). Penalized likelihood regression: general formulation and efficient approximation. The Canadian Journal of Statistics, 30, 619-628 crossref(new window)

4.
Gu, C. and Xiang, D. (2001). Cross-validating non-Gaussian data: generalized approximate cross-validation revisited. Journal of Computational and Graphical Statistics, 10, 581-591 crossref(new window)

5.
Kim, Y.-J. (2005). Computation and smoothing parameter selection in penalized likelihood regression, The Korean Communications in Statistics, 12, 743-758 crossref(new window)

6.
Kim, Y.-J. (2006) Bayesian confidence intervals in penalized likelihood regression, The Korean Communications in Statistics, 13, 141-150 crossref(new window)

7.
Kim, Y.-J. and Gu, C. (2004). Smoothing spline Gaussian regression: more scalable computation via efficient approximation. Journal of the Royal Statistical Society, Ser. B, 66, 337-356 crossref(new window)

8.
Van de Ven, R. (1993). Estimating the Shape parameter for the Negative Binomial distribution. Journal of Statistical Computation and Simulation, 46, 111-123 crossref(new window)

9.
Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society, Ser. B, 40, 364-372

10.
Wahba, G. (1983). Bayesian 'confidence intervals' for the cross-validated smoothing spline. Journal of the Royal Statistical Society, Ser. B, 45, 133-150

11.
Xiang, D. and Wahba, G. (1996). A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica, 6, 675-692