JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution
Oh, Mi-Ra; Kim, Kyung-Sook; Cho, Wan-Hyun; Son, Young-Sook;
  PDF(new window)
 Abstract
A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.
 Keywords
Four-parameter gamma distribution;noninformative prior;Gibbs sampling;adaptive rejection sampling;adaptive rejection Metropolis sampling;
 Language
Korean
 Cited by
1.
Bayesian Estimation of the Two-Parameter Kappa Distribution,;;;;

Communications for Statistical Applications and Methods, 2007. vol.14. 2, pp.355-363 crossref(new window)
 References
1.
Abramowitz, M. and Stegun, I. A. (1972). Polygamma Functions. Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables, 9th printing, Dover, New York

2.
Bowman, K. O. and Shenton, L. R. (1988). Properties of Estimators for the Gamma Distribution. Marcel Dekker, New York

3.
Cohen, A .C. and Norgaard, N. J. (1977). Progressively censored sampling in the three-parameter gamma distribution. Technometrics, 19,333-340 crossref(new window)

4.
Cohen, A. C. and Whitten, B. J. (1982). Modified moment and maximum likelihood estimators for parameters of the three-parameter gamma distribution. Communications in Statistics-Simulation and Computation. 11, 197-216 crossref(new window)

5.
Cohen, A. C. and Whitten, B. J. (1986). Modified moment estimation for the three-parameter gamma distribution. Journal of Quality Technology, 18, 53-62

6.
Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-472 crossref(new window)

7.
Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348 crossref(new window)

8.
Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55-65 crossref(new window)

9.
Hager, H. W. and Bain, L. J. (1970). Inferential procedures for the generalized gamma distribution. Journal of the American Statistical Association, 65, 1601-1609 crossref(new window)

10.
Hager, H. W., Bain, L. J. and Antle, C. E. (1971). Reliability estimation for the generalized gamma distribution and robustness of the Weibull model. Technometrics, 13, 547-557 crossref(new window)

11.
Harter, H. L. (1967). Maximum-likelihood estimation of the parameters of a four-parameter generalized gamma population from complete and censored samples. Technometrics, 9, 159-165 crossref(new window)

12.
Harter, H. L. and Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples. Technometrics, 7, 639-643 crossref(new window)

13.
Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics: Continuous Univariate Distributions-1. John Wiley & Sons, New York

14.
Lawless, J. F. (1980). Inference in the generalized gamma and log gamma distributions. Technometrics, 22, 409-419 crossref(new window)

15.
Parr, V. B. and Webster, J. T. (1965). A method for the discriminating between failure density functions used in reliability predictions. Technometrics, 7, 1-10 crossref(new window)

16.
Pang, W. K., Hou, S. H., Yu, B. W. T. and Li, K. W. K. (2004). A simulation based approach to the parameter estimation for the three-parameter gamma distribution. European Journal of Operational Research, 155, 675-682 crossref(new window)

17.
Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika, 61, 539-544 crossref(new window)

18.
Ripley, B. D. (1988). Stochastic Simulation. John Wiley & Sons, New York

19.
Ritter, C. and Tanner, M. A. (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the griddy-Gibbs sampler. Journal of the American Statistical Association, 87, 861-868 crossref(new window)

20.
Roberts, G. O. and Smith, A. F. M. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications, 49, 207-216 crossref(new window)

21.
Son, Y, Sand Oh, M. (2006). Bayesian estimation of the two-parameter gamma distribution. Communications in Statistics-Simulation and Computation, 35, 285-293 crossref(new window)

22.
Stacy, E. W. (1973). Quasimaximum likelihood estimators for two-parameter gamma distributions. IBM Journal of Research and Development, 17, 115-124 crossref(new window)

23.
Stacy, E. W. and Mihram, G. A. (1965). Parameter estimation for a generalized gamma distribution. Technometrics, 7, 349-358 crossref(new window)

24.
The MathWorks Inc. (2002). MATLAB/Statistics Toolbox, Version 6.5. Natick, MA

25.
Thom, H. C. S. (1958). A note on the gamma distribution. Monthly Weather Review, 86,117-122 crossref(new window)

26.
Tsionas, E. G. (2001). Exact inference in four-parameter generalized gamma distribution. Communications in Statistics-Theory and Methods, 30, 747-756 crossref(new window)