JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Estimation of Shape Parameter of Pareto Income Distribution Using LINEX Loss Function
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Estimation of Shape Parameter of Pareto Income Distribution Using LINEX Loss Function
Saxena, Sharad; Singh, Housila P.;
  PDF(new window)
 Abstract
The economic world is full of patterns, many of which exert a profound influence over society and business. One of the most contentious is the distribution of wealth. Way back in 1897, an Italian engineer-turned-economist named Vilfredo Pareto discovered a pattern in the distribution of wealth that appears to be every bit as universal as the laws of thermodynamics or chemistry. The present paper proposes some Bayes estimators of shape parameter of Pareto income distribution in censored sampling. Asymmetric LINEX loss function has been considered to study the effects of overestimation and underestimation. For the prior distribution of the parameter involved a number of priors including one and two-parameter exponential, truncated Erlang and doubly truncated gamma have been contemplated to express the belief of the experimenter s/he has regarding the parameter. The estimators thus obtained have been compared theoretically and empirically with the corresponding estimators under squared error loss function, some of which were reported by Bhattacharya et al. (1999).
 Keywords
Pareto income distribution(PID);Bayesian estimation;Linearly-exponential (LINEX) loss function;squared error loss function(SELF);risk;robustness;admissibility;
 Language
English
 Cited by
 References
1.
Aitchison, J. and Dunsmore, I. R. (1975). Statistical Prediction Analysis. Cambridge University Press, London

2.
Arnold, B. C. (1983). Pareto Distributions. International Cooperative Publishing House. Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto population. Journal of Econometrics, 21, 287-306 crossref(new window)

3.
Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of American Statistical Association, 84, 1079-1084 crossref(new window)

4.
Arnold, B. C. and Press, S. J. (1986). Bayesian analysis of censored and grouped data from Pareto populations. Bayesian Inference and Decision Techniques (P. Goel and A. Zellner eds.), North-Holland, Amsterdam

5.
Berger, J. O. (1980). Statistical Decision Theory: Foundations, Concepts and Methods. Springer-Verlag, New York

6.
Bhattacharya, S. K., Chaturvedi, A. and Singh, N. K. (1999). Bayesian estimation for the Pareto income distribution. Statistical Papers, 40, 247-262 crossref(new window)

7.
Buchanan, M. (2002). Wealth happens. Harvard Business Review, April, 3-7

8.
Chattopadhyay, S., Chaturvedi, A. and Sengupta, R. N. (2000). LINEX loss function and its statistical applications. A review. Decision, 26, 51-66

9.
Dagum, C. (1988). Gini ratio. The New Palgrave: A Dictionary of Economics (Eatwell, John, Murray Milgate and Peter Newman eds.), 1

10.
Davis, H. T. and Feldstein, M. L. (1979). The generalized Pareto law as a model for progressively censored survival data. Biometrika, 66, 299-306 crossref(new window)

11.
DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York

12.
De Lima, P. J. F. (1997). On the robustness of non-linearity tests to moment condition failure. Journal of Econometrics, 76, 251-280 crossref(new window)

13.
De Vany, A. and Walls, W. D. (1999). Uncertainty in movie industry: Does star power reduce the terror of the box office? Journal of Cultural Economics, 23, 285-318 crossref(new window)

14.
De Vany, A. (2003). Hollywood Economics. Routledge, London

15.
Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York

16.
Ganguly, A., Singh, N. K, Choudhuri, H. and Bhattacharya, S. K (1992). Bayesian estimation of the GINI index for PID. Test, 1, 93-104 crossref(new window)

17.
Geisser, S. (1984). Predicting Pareto and exponential observable. Canadian Journal of Statistics, 12, 143-152 crossref(new window)

18.
Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185 crossref(new window)

19.
Gomes, C. P., Selman, B. and Crato, N. (1997). Heavy-tailed distributions in combinatorial search. Principles and Practice of Constraint Programming, CP 97. (Gert Smolka, ed.) Lecture Notes in Computer Science 1330, Springer, 121-135

20.
Hagstroem, K G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 59-71

21.
Harris, C. M. (1968). The Pareto distribution as a queue service discipline. Operations Research, 16, 307-313 crossref(new window)

22.
Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York

23.
Launer, R. L. and Wilkinson, G. N. (eds.) (1979). Robustness in Statistics. Academic Press, New York

24.
Liang, T. C. (1993). Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution. Computational Statistics and Data Analysis, 16, 34-45

25.
Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55,170-178

26.
Mandelbrot, B. (1960). The Pareto-levy law and the distribution of income. International Economics Review, 1, 79-106 crossref(new window)

27.
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, University of Chicago, 36, 394-419

28.
Mandelbrot, B. (1967). The variation of some other speculative prices. Journal of Business, University of Chicago, 40, 393-413

29.
Nigm, A. M. and Hamdy, H. I. (1987). Bayesian prediction bands for the Pareto lifetime model. Communications in Statistics - Theory and Methods, 16, 1791-1772

30.
Pareto, V. (1897). Cours d' Economie Politique. Rouge et Cie, Paris

31.
Pigou, A. C. (1932). The Economics of Welfare. The McMillan Co., London

32.
Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Harvard University Press, Boston

33.
Sinha, S. and Pan, R. K. (2005). Blockbusters, Bombs and Sleepers: The income distribution of movies. Econophysics of Wealth Distribution (A. Chatterjee, B. K. Chakrabarti and S. Yarlagadda eds.), Springer, 43-47

34.
Sinha, S. and Raghavendra, S. (2004). Hollywood blockbusters and long-tailed distributions: An empirical study of the popularity of movies. The European Physical Journal-B. 42, 293-296 crossref(new window)

35.
Sornette, D. and Zajdenweber, D. (1999). Economic returns of research: The Pareto law and its implications. The European Physical Journal-B, 8, 653-664 crossref(new window)

36.
Upadhyaya, S. K. and Shastri, V. (1997). Bayes results for classical Pareto distribution via Gibbs sampler with doubly censored observations. IEEE Transactions on Reliability, 46, 56-59 crossref(new window)

37.
Varian, H. R. (1975). A Bayesian approach to real estate assessment. Studies in Bayesian Econometrics and Statistics in honour of Leonard J. Savage (Stephen E. Fienberg and Arnold Zellner eds.), North-Holland, Amsterdam, 195-208

38.
Wetherill, G. B. (1961). Bayesian sequential analysis. Biometrika, 48, 281-292 crossref(new window)

39.
Zellner, A. and Geisel, M. S. (1968). Sensitivity of control to uncertainty and form of the criterion function. The Future of Statistics (Donald G. Watts ed.), Academic Press, New York,269-289

40.
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons

41.
Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of American Statistical Association, 81, 446-451 crossref(new window)