JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influence Analysis of Constrained Regression Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence Analysis of Constrained Regression Models
Kim, Myung-Geun;
  PDF(new window)
 Abstract
Cook`s distance is generalized to the multiple linear regression with linear constraints on regression coefficients. It is used for identifying influential observations in constrained regression models. A numerical example is provided for illustration.
 Keywords
Constrained regression;Cook`s distance;influence;
 Language
English
 Cited by
1.
Cook-Type Influence Measure in Constrained Regression Models,;

Communications for Statistical Applications and Methods, 2008. vol.15. 2, pp.229-234 crossref(new window)
1.
Influence diagnostics in constrained general linear models, Communications in Statistics - Theory and Methods, 2016, 45, 18, 5331  crossref(new windwow)
 References
1.
Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. 3rd ed., John Wiley & Sons, New York

2.
Chatterjee, S. and Hadi, A. S. (1986). Influential observations, high leverage points, and outliers in linear regression (with discussions). Statistical Science, 1, 379-416 crossref(new window)

3.
Chipman, J. S. and Rao, M. M. (1964). The treatment of linear restrictions in regression analysis. Econometrica, 32, 198-209 crossref(new window)

4.
Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18 crossref(new window)

5.
Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall, New York

6.
Kim, M. G. (2003). Detection of outliers in constrained regression. The Korean Communications in Statistics, 10, 519-524 crossref(new window)

7.
Lee, S. -Y. and Wang, S. J. (1996). Sensitivity analysis of structural equation models. Psychomeirika, 61, 93-108 crossref(new window)

8.
Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996). Applied Linear Regression Models. 3rd ed., McGraw-Hill/Irwin

9.
Paula, G. A. (1993). Assessing local influence in restricted regression models. Computational Statistics & Data Analysis, 16, 63-79 crossref(new window)

10.
Paula, G. A. (1999). Leverage in inequality-constrained regression models. The Statistician, 48, 529-538

11.
Schott, J. R. (1997). Matrix Analysis for statistics. John Wiley & Sons, New York

12.
Seber, G. A. F. (1977). Linear Regression Analysis. John Wiley & Sons, New York