JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Estimation of the Two-Parameter Kappa Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Estimation of the Two-Parameter Kappa Distribution
Oh, Mi-Ra; Kim, Sun-Worl; Park, Jeong-Soo; Son, Young-Sook;
  PDF(new window)
 Abstract
In this paper a Bayesian estimation of the two-parameter kappa distribution was discussed under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape parameter and scale parameter in the Gibbs sampler is implemented using the adaptive rejection Metropolis sampling algorithm of Gilks et al. (1995). A Monte Carlo study showed that the Bayesian estimators proposed outperform other estimators in the sense of mean squared error.
 Keywords
Two-parameter Kappa distribution;Bayesian estimation;noninformative prior;Gibbs sampling;adaptive rejection Metropolis sampling;
 Language
Korean
 Cited by
1.
LH-Moments of Some Distributions Useful in Hydrology,;;;;

Communications for Statistical Applications and Methods, 2009. vol.16. 4, pp.647-658 crossref(new window)
 References
1.
박정수. (2006). 2-모수 카파분포에서의 추정 방법들의 비교. Journal of the Korean Data Analysis Society, 8, 1199-1207

2.
Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). Adaptive rejection metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-472 crossref(new window)

3.
Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348 crossref(new window)

4.
Hosking, J. R. M. (1994). The four parameter Kappa distribution. IBM Journal of Research and Development, 38, 251-258 crossref(new window)

5.
Hosking, J. R. M. and Wallis, J. R. (1997). Regional Frequency Analysis: An Approach based on L-moments. Cambridge University Press, Cambridge

6.
Park, J. S. and Jung, H. S. (2002). Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate. Theoretical and Applied Climatology, 72, 5-64

7.
Mason, S, J., Waylen, P. R., Mimmack, G. M., Rajaratnam, B. and Harrison, J. M. (1999). Changes in extreme rainfall events in South Africa. Climatic Change, 41, 249-257 crossref(new window)

8.
Mielke, P. W. (1973). Another family of distributions for describing and analyzing precipitation data. Journal of Applied Meteorology, 12, 275-280 crossref(new window)

9.
Oh, M., Kim, K., Cho, W. H. and Son, Y. S. (2007). Bayesian parameter estimation of the four parameter gamma distribution. The Korean Communications in Statistics, 14, 255-266 crossref(new window)

10.
Ross, S. M. (1997). Simulation. 2nd ed., Academic Press

11.
Son, Y. S. and Oh, M. (2006). Bayesian estimation of the two-parameter gamma distribution. Communications in Statistics-Simulation and Computation, 35, 285-293 crossref(new window)

12.
Son, Y. S. and Oh, M. (2007). Bayesian estimation of the Nakagami-m fading parameter. To appear in The Korean Communications in Statistics

13.
The MathWorks Inc. (2002). MATLAB/Statistics Toolbox. Version 6.5. Natick, MA