JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modelling on Multi-modal Circular Data using von Mises Mixture Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modelling on Multi-modal Circular Data using von Mises Mixture Distribution
Jang, Young-Mi; Yang, Dong-Yoon; Lee, Jin-Young; Na, Jong-Hwa;
  PDF(new window)
 Abstract
We studied a modelling process for unimodal and multimodal circular data by using von Mises and its mixture distribution. In particular we suggested EM algorithm to find ML estimates of the mixture model. Simulation results showed the suggested methods are very accurate. Applications to two kinds of real data sets are also included.
 Keywords
Circular data;EM algorithm;von Mises distribution;mixture model;
 Language
English
 Cited by
1.
겹친라플라스 혼합분포를 통한 첨 다봉형 비대칭 원형자료의 모형화,나종화;장영미;

Journal of the Korean Data and Information Science Society, 2010. vol.21. 5, pp.863-871
2.
겹친왜정규혼합분포를 이용한 비대칭 원형자료의 모형화,나종화;장영미;

Journal of the Korean Data and Information Science Society, 2010. vol.21. 2, pp.241-250
3.
혼합원형분포를 이용한 지방국도의 시간교통량 추정모형,나종화;장영미;

응용통계연구, 2011. vol.24. 3, pp.547-557 crossref(new window)
4.
Modeling Circular Data with Uniformly Dispersed Noise,;;;

응용통계연구, 2012. vol.25. 4, pp.651-659 crossref(new window)
1.
Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions, Korean Journal of Applied Statistics, 2011, 24, 3, 547  crossref(new windwow)
2.
Modeling Circular Data with Uniformly Dispersed Noise, Korean Journal of Applied Statistics, 2012, 25, 4, 651  crossref(new windwow)
 References
1.
Batschelet, E. (1981). Circular Statistics in Biology, Academic Press, London

2.
Do, K. and McLanchlan, G. J. (1984). Estimation of mixing proportions: a case study. Applied Statistics, 33, 134-140 crossref(new window)

3.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser. B, 39, 1-38

4.
Everitt, B. S. (1984). Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions; a comparison of different algorithms. The Statistician, 33, 205-215 crossref(new window)

5.
Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge University Press, New York

6.
Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics. World Scientific, NJ

7.
Jammalamadaka, S. R. and Kozubowski, T. J. (2003). A new family of circular models: the wrapped laplace distributions. Advances and Application in Statistics, 3, 77-103

8.
Jones, M. C. and James, W. R. (1972). Analysis of bimodal orientation data. Mathematical Geology, 1, 129-135 crossref(new window)

9.
Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, New York

10.
Mardia, K. V. and Jupp, P. E. (1999). Directional Statistics. John Wiley & Sons, New York

11.
Mardia, K. V. and Sutton, T. W. (1975). On the modes of a mixture of two von Mises distributions. Biometrika, 62, 699-701 crossref(new window)

12.
McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions. 2nd ed., John Wiley & Sons, New York

13.
Pewsey, A. (2000). The wrapped skew-normal distribution on the circle. Communications in Statistics: Theory and Methods, 29, 2459-2472 crossref(new window)

14.
Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Enviromental and Ecological Statistics, 13, 257-269 crossref(new window)

15.
Tanner, M. A. (1996). Tools for Statistical Inference: : Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer-Verlag, New York

16.
Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. John Wiley & Sons, Chichester