Applications of Cluster Analysis in Biplots

Title & Authors
Applications of Cluster Analysis in Biplots
Choi, Yong-Seok; Kim, Hyoung-Young;

Abstract
Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions, typically two, and they superimpose on this display representations of the variables on which the samples are measured(Gower and Hand, 1996, Chapter 1). And the relationships between the observations and variables can be easily seen. Thus, biplots are useful for giving a graphical description of the data. However, this method does not give some concise interpretations between variables and observations when the number of observations are large. Therefore, in this study, we will suggest to interpret the biplot analysis by applying the K-means clustering analysis. It shows that the relationships between the clusters and variables can be easily interpreted. So, this method is more useful for giving a graphical description of the data than using raw data.
Keywords
Biplots;K-means cluster analysis;
Language
Korean
Cited by
1.
정준상관 행렬도와 군집분석을 응용한 KLPGA 선수의 기술과 경기성적요인에 대한 연관성 분석,최태훈;최용석;

응용통계연구, 2008. vol.21. 3, pp.429-439
2.
테니스 그랜드슬램대회의 선수특성요인과 경기요인에 대한 분석연구 -정준상관 행렬도와 프로크러스티즈 분석의 응용-,최태훈;최용석;신상민;

응용통계연구, 2009. vol.22. 4, pp.855-864
3.
일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구,최태훈;최용석;

Communications for Statistical Applications and Methods, 2010. vol.17. 6, pp.917-925
1.
A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis, Communications for Statistical Applications and Methods, 2010, 17, 6, 917
References
1.
최용석 (2006). <행렬도 분석>. 기초과학 총서 2권, 부산대학교 기초과학연구원

2.
허명회 (1993). <統計相談의 이해>. 자유아카데미, 서울

3.
Bradu, D. and Gabriel, K. R. (1978). The biplot as a diagnostic tool for models of two-way tables. Technometrics, 20, 47-68

4.
Choi, Y. S. (1991). Resistant principal component analysis, biplot and correspon-dence analysis. Unpublished Ph.D. Dissertation, Department of Statistics, Korea University

5.
du Toit, S. H. C., Steyn, A. G. W. and Stumpf, R. H. (1986). Graphical Exploratory Data Analysis. Springer-Verlag, New York

6.
Gabriel, K. R. (1971). The biplot graphics display of matrices with applications to principal component analysis. Biometrika, 58, 453-467

7.
Gabriel, K. R. (1981). Biplot display of multivariate matrices for inspection of data and diagnosis. In Interpreting Multivariate Data (Barnett, V., ed), 147-173, Wiley, New York

8.
Gower, J. C. and Hand, D. J. (1996). Biplots. Chapman & Hall/CRC, London

9.
Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag, New York

10.
Fisher, R. A. (1970). Statistical Methods for Research Workers. 14th ed. (orig-inally published 1925), Edinburgh, Oliver and Boyd

11.
Sharama, S. (1996). Applied Multivatiate Techniques. Wiley, New York