JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Simple Graphs for Complex Prediction Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Simple Graphs for Complex Prediction Functions
Huh, Myung-Hoe; Lee, Yong-Goo;
  PDF(new window)
 Abstract
By supervised learning with p predictors, we frequently obtain a prediction function of the form $y\;
 Keywords
Visualization;prediction function;LOESS;neural network model;support vector machine;random forest;
 Language
English
 Cited by
1.
Visualizing Multi-Variable Prediction Functions by Segmented k-CPG's,;

Communications for Statistical Applications and Methods, 2009. vol.16. 1, pp.185-193 crossref(new window)
2.
Visualizing SVM Classification in Reduced Dimensions,;;

Communications for Statistical Applications and Methods, 2009. vol.16. 5, pp.881-889 crossref(new window)
 References
1.
Breiman, L. (2001). Random forests, Machine Learning, 45, 5-32 crossref(new window)

2.
Brownlee, K. A. (1960). Statistical Theory and Methodology in Science and Engineering, Jhon Wiley & Sons, New York

3.
Cleveland, W. S., Grosse, E. and Shyu, W. M. (1992). Local regression models, Chapter 8 of Statistical Models in S (eds by J.M. Chambers and T.J. Hastie), Wadsworth &Brooks/Cole

4.
Friedman, J. H. and Popescu, B. E. (2005). Predictive learning via rule ensembles, Technical Report, Department of Statistics, Stanford University

5.
Jiang, T. and Owen, A. B. (2002). Quasi-regression for visualization and interpretation of black box functions, Technical Report, Department of Statistics, Stanford University

6.
Kim, J. H. (2008). A graphical method of checking the adequacy of linear systematic component in generalized linear models, Communications of the Korean Statistical Society, 15, 27-41 crossref(new window)

7.
Ripley, B. D. (1996). Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge