JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution
Lee, Woo-Dong; Kang, Sang-Gil; Kim, Dong-Seok;
  PDF(new window)
 Abstract
Small sample likelihood based inference for the shape parameter of the inverse Gaussian distribution is the purpose of this paper. When shape parameter is of interest, the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape parameter based on an exact method. Throughout simulation, we will compare the statistical properties of the proposed statistics to the statistic given by Hsieh (1990) in term of confidence interval and power of test. We also discuss a real data example.
 Keywords
Inverse Gaussian distribution;shape parameter;signed log-likelihood statistics;modified signed log-likelihood ratio statistics;
 Language
English
 Cited by
1.
Small sample likelihood based inference for the normal variance ratio,;

Journal of the Korean Data and Information Science Society, 2013. vol.24. 4, pp.911-918 crossref(new window)
1.
Small sample likelihood based inference for the normal variance ratio, Journal of the Korean Data and Information Science Society, 2013, 24, 4, 911  crossref(new windwow)
 References
1.
Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standardized signed log likelihood ratio, Biometrika, 73, 307-322

2.
Barndorff-Nielsen, O. E. (1991). Modified signed log likelihood ratio, Biometrika, 78, 557-563 crossref(new window)

3.
Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman & Hall/CRC, London

4.
Chhikara, R. S. and Folks, J. L. (1977). The inverse Gaussian distribution as a lifetime model, Technometrics, 19, 461-468 crossref(new window)

5.
Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution: Theory, Methodology and Applications, Marcel Dekker, New York

6.
Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion), Journal of the Royal Statistical Society, Series B, 49, 1-39

7.
Folks, J. L. and Chhikara, R. S. (1978). The inverse Gaussian distribution and its statistical application-A review, Journal of the Royal Statistical Society, Series B, 40, 263-289

8.
Hsieh, H. K. (1990). Inferences on the coefficient of variation of an inverse Gaussian distribution, Communications in Statistics-Theory and Methods, 19, 1589-1605 crossref(new window)

9.
Kang, S. G., Kim, D. H. and Lee, W. D. (2004). Noninformative priors for the ratio of parameters in inverse Gaussian distribution, The Korean Journal of Applied Statistics, 17, 49-60

10.
Mudholkar, G. S. and Natarajan, R. (2002). The inverse Gaussian models: Analogues of symmetry, skewness and kurtosis, Annals of the Institute of Statistical Mathematics, 54, 138-154 crossref(new window)

11.
Seshadri, V. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York

12.
Tweedie, M. C. K. (1957a). Statistical properties of inverse Gaussian distributions I, The Annals of Mathematical Statistics, 28, 362-377 crossref(new window)

13.
Tweedie, M. C. K. (1957b). Statistical properties of inverse Gaussian distributions II, The Annals of Mathematical Statistics, 28, 696-705 crossref(new window)

14.
Whitmore, G. A. (1979). An inverse Gaussian model for labour turnover, Journal of the Royal Statistical Society, Serise A, 142, 468-478 crossref(new window)