JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation for the Triangular Distribution under Progressive Type-II Censoring
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation for the Triangular Distribution under Progressive Type-II Censoring
Kang, Suk-Bok; Han, Jun-Tae; Jung, Won-Tae;
  PDF(new window)
 Abstract
In this paper, we derive the approximate maximum likelihood estimators(AMLEs) and maximum likelihood estimator of the scale parameter in a triangular distribution based on progressive Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation for various progressive censoring schemes.
 Keywords
Approximate maximum likelihood estimator;progressive Type-II censoring;triangular distribution;
 Language
English
 Cited by
 References
1.
Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357 crossref(new window)

2.
Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods and Applications, Birkhaser, Boston

3.
Balakrishnan, N. and Asgharzadeh, A. (2005). Inference for the scaled half-logistic distribution based on progressively Type-II censored samples, Communications in Statistics - Theory & Methods, 34, 73-87 crossref(new window)

4.
Balakrishnan, N. and Nevzovor, V. B. (2003). A Primer on Statistical Distributions, John Wiley & Sons, New York

5.
Balakrishnan, N. and Wong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right-censoring, IEEE Transactions on Reliability, 40, 140-145 crossref(new window)

6.
Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95 crossref(new window)

7.
Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressive Type-II censoring, Journal of Statistical Computation & Simulation, 74, 25-45 crossref(new window)

8.
Balasooriya, U., Saw, S. L. C. and Gadag, V. (2000). Progressive censored reliability sampling plans for the Weibull distribution, Technometrics, 42, 160-167 crossref(new window)

9.
Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378 crossref(new window)

10.
Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398

11.
Kang, S. B. (1996). Approximate MLE for the scale parameter of the double exponential distribution based on Type-II censored samples, Journal of the Korean Mathematical Society, 33, 69-79

12.
Keefer, D. L. and Verdini, W. A. (1993). Better estimation of PERT activity time parameters, Management Science, 39, 1086-1091 crossref(new window)

13.
Kim, C. S. (2006). On estimating Burr Type-XII parameter based on general Type-II progressive censoring, The Korean Communications in Statistics, 13, 89-99 crossref(new window)

14.
Lin, C. T., Wu, S. J. S. and Balakrishnan, N. (2006). Inference for log-gamma distribution based on progressively censored data, Communications in Statistics-Theory and Methods, 35, 1271-1292 crossref(new window)

15.
Lee, H. J., Han, J. T. and Kang, S. B. (2008). Estimation for a triangular distribution based on multiply Type-II censored samples, Journal of the Korean Data & Information Science Society, 19, 319-330

16.
Moder, J. J. and Rodgers, E. G. (1968). Judgment estimates of the moments of PERT type distributions, Management Science, 15, 76-83 crossref(new window)

17.
Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm, Computational Statistics & Data Analysis, 39, 371-386 crossref(new window)

18.
Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressive Type-II censored data, The Korean Communications in Statistics, 14, 329-344 crossref(new window)

19.
Viveros, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data, Technometrics, 36, 84-91 crossref(new window)

20.
von Drop, J. R. and Kotz, S. (2002). A novel extension of the triangular distribution and its parameter estimation, The Statistician, 51, 63-79