JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Semiparametric Kernel Poisson Regression for Longitudinal Count Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Semiparametric Kernel Poisson Regression for Longitudinal Count Data
Hwang, Chang-Ha; Shim, Joo-Yong;
  PDF(new window)
 Abstract
Mixed-effect Poisson regression models are widely used for analysis of correlated count data such as those found in longitudinal studies. In this paper, we consider kernel extensions with semiparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.
 Keywords
Longitudinal data;fixed-effect;random-effect;Poisson regression;canonical parameter;kernel trick;penalized likelihood;cross-validation function;
 Language
English
 Cited by
 References
1.
Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematics, 31, 377-403

2.
Gu, C. and Ma, P. (2005). Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection, Journal of Computational and Graphical Statistics, 14, 485-504 crossref(new window)

3.
Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis, John Wiley & Sons, New York

4.
Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and its Applications, 33, 82-95 crossref(new window)

5.
Long, J. S. (1997). Regression models for categorical and limited dependent variables, Advanced Quantitative Techniques in the Social Sciences, 7, Sage Publications

6.
McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models (Monographs on Statistics and Applied Probability), Chapman & Hall/CRC, London

7.
Shim, J., Hong, D. H., Kim, D. H. and Hwang, C. (2007). Multinomial kernel logistic regression via bound optimization approach, Communications of the Korean Statistical Society, 14, 507-516 crossref(new window)

8.
Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671 crossref(new window)

9.
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer, New York

10.
Winkelmann, R. (2003). Econometric Analysis of Count Data, Springer Verlag, Berlin

11.
Wu, H. and Zhang, J. T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches, John Wiley & Sons, New York

12.
Yuan, M. (2005). Automatic smoothing for Poisson regression, Communications in Statistics - Theory and Methods, 34, 603-617 crossref(new window)