Advanced SearchSearch Tips
Volatility Analysis for Multivariate Time Series via Dimension Reduction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Volatility Analysis for Multivariate Time Series via Dimension Reduction
Song, Eu-Gine; Choi, Moon-Sun; Hwang, S.Y.;
  PDF(new window)
Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.
MGARCH;factor model;MSE;MAD;
 Cited by
Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석,이대수;송성주;

응용통계연구, 2011. vol.24. 4, pp.597-607 crossref(new window)
DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용,최성미;홍선영;최문선;박진아;백지선;황선영;

응용통계연구, 2009. vol.22. 5, pp.995-1005 crossref(new window)
사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석,황선영;최문선;도종두;

응용통계연구, 2009. vol.22. 2, pp.261-270 crossref(new window)
금융시계열 분석을 위한 다변량-GARCH 모형에서 비대칭-CCC의 도입 및 응용,박란희;최문선;황선;

응용통계연구, 2011. vol.24. 5, pp.821-831 crossref(new window)
A recent overview on financial and special time series models, Korean Journal of Applied Statistics, 2016, 29, 1, 1  crossref(new windwow)
Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data, Korean Journal of Applied Statistics, 2011, 24, 5, 821  crossref(new windwow)
성웅현 (2002). <응용 다변량분석>. 탐진

Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey, Journal of Applied Econometrics, 21, 79-109 crossref(new window)

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 crossref(new window)

Bollerslev, T. (1990). Modeling the conditional in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics, 72, 498-505 crossref(new window)

Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1998). A capital-asset pricing model with time-varying covariances, Journal of Political Economy, 96, 116-131 crossref(new window)

Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. (1997). The Econometrics of Financial Markets, Princeton University Press, Princeton, New Jersey

Connor, G. (1995). The three types of factor models: A comparison of their explanatory power, Financial Analysts Journal, 51, 42-46

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation, Econometrica, 50, 987-1007 crossref(new window)

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH, Econometric Theory, 11, 122-150 crossref(new window)

Grinold, R. C. and Kahn, R. N. (2000). Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Controlling Risk, 2nd edition., McGraw-Hill, New York

RiskMetrics (1996). RiskMetrics, Technical Document, 4th ed., J. P. Morgan, New York

Tsay, R. S. (2005). Analysis of Financial Time Series, John Wiley & Sons, New York

Zivot, E. and Wang, J. (2006). Modeling Financial Time Series with S-PLUS, 2nd ed., Springer, New York