JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Median Ranked Ordering-Set Sample Test for Ordered Alternatives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Median Ranked Ordering-Set Sample Test for Ordered Alternatives
Kim, Dong-Hee; Ock, Bong-Seak;
  PDF(new window)
 Abstract
In this paper, we consider the c-sample location problem for ordered alternatives using median ranked ordering-set samples(MROSS). We propose the test statistic using the median of samples that have the same ranked order in each cycle of ranted ordering-set sample(ROSS). We obtain the asymptotic property of the proposed test statistic and Pitman efficiency with respect to other test statistic. In simulation study, our proposed test statistic has good powers for some underlying distributions we consider.
 Keywords
Median ranked ordering-set samples;ordered alternatives;Jonckheere(1954);Pitman efficiency;
 Language
English
 Cited by
 References
1.
Bohn, L. L. and Wolfe, D. A. (1992). Nonparametric two-sample procedures for ranked-set samples data, Journal of the American Statistical Association, 87, 552-561 crossref(new window)

2.
Bohn, L. L. and Wolfe, D. A. (1994). The effect of imperfect judgement rankings on properties of procedures based on the ranked-set samples analog of the Mann-Whitney-Wilcoxon statistic, Journal of the American Statistical Association, 89, 168-176 crossref(new window)

3.
Dell, T. R. and Clutter, J. L. (1972). Ranked-set sampling theory with order statistics background, Biometrics, 28, 545-553 crossref(new window)

4.
Hettmansperger, T. P. (1995). The ranked-set sample sign test, Journal of Nonparametric Statistics, 4, 263-270 crossref(new window)

5.
Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, The Annals of Mathematical Statistics, 19, 293-325 crossref(new window)

6.
Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145 crossref(new window)

7.
Kim, D. H. and Kim, H. G. (2003). Sign test using ranked ordering-set sampling, Journal of Nonparametric Statistics, 15, 303-309 crossref(new window)

8.
Kim, D. H., Kim, H. G. and Park, H. K. (2000). Nonparametric test for ordered alternatives on multiple ranked-set samples, The Korean Communications in Statistics, 7, 563-573

9.
Kim, D. H., Kim, H. G. and You, S. H. (2006). Nonparametric test for ordered alternatives on ranked ordering-set samples, Journal of the Korean Data Analysis Society, 8, 459-467

10.
Koti, K. M. and Babu, G. J. (1996). Sign test for ranked-set sampling, Communications in Statistics - Theory and Methods, 25, 1617-1630 crossref(new window)

11.
McIntyre, G. A. (1952). A method for unbiased selective sampling using ranked sets, Australian Journal of Agricultural Research, 3, 385-390 crossref(new window)

12.
Ozturk, O. (1999). Two-sample inference based on one-sample ranked set sample sign statistics, Journal of Nonparametric Statistics, 10, 197-212 crossref(new window)

13.
Randles, R. H. and Wolfe, D. A. (1979). Introduction to the theory of nonparametric statistics, John Wiley & Sons, New York

14.
Stokes, S. L. (1977). Ranked set sampling with concomitant variables, Communications in Statistics - Theory and Methods, 6, 1207-1211 crossref(new window)

15.
Stokes, S. L. and Sager, T. W. (1988). Characterization of a ranked-set sample with application to estimating distribution functions, Journal of the American Statistical Association, 83, 374-381 crossref(new window)

16.
Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering, Annals of the Institute of Statistical Mathematics, 20, 1-31 crossref(new window)