Advanced SearchSearch Tips
A General Mixed Linear Model with Left-Censored Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A General Mixed Linear Model with Left-Censored Data
Ha, Il-Do;
  PDF(new window)
Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.
H-likelihood;left censoring;marginal likelihood;mixed linear models;random effects;
 Cited by
Carriquiry, A. L. and Gianola, D. and Fernando, R. L. (1987). Mixed-model analysis of a censored normal distribution with reference to animal breeding, Biometrics, 43, 929-939 crossref(new window)

Gueorguieva, R. (2001). A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family, Statistical Modelling, 1, 177-193 crossref(new window)

Ha, I. D. and Lee, Y. (2005). Multilevel mixed linear models for survival data, Lifetime data Analysis, 11, 131-142 crossref(new window)

Ha, I. D., Lee, Y. and MacKenzie, G. (2007a). Model selection for multi-component frailty models, Statistics in Medicine, 26, 4790-4807 crossref(new window)

Ha, I. D., Lee, Y. and Pawitan, Y. (2007b). Genetic mixed linear models for twin survival data, Behavior Genetics, 37, 621-630 crossref(new window)

Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models, Biometrika, 88, 233-243 crossref(new window)

Ha, I. D., Lee, Y. and Song, J. K. (2002). Hierarchical-likelihood approach for mixed linear models with censored data, Lifetime Data Analysis, 8, 163-176 crossref(new window)

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model, Biometrics, 31, 423-447 crossref(new window)

Hougaard, P. (2000). Analysis of Multivariate Survival Data, Springer-Verlag, New York

Hughes, J. P. (1999). Mixed effects models with censored data with application to HIV RNA levels, Biometrics, 55, 625-629 crossref(new window)

Jacqmin-Gadda, H., Thiebaut, R., Ch^ene, G. and Commenges, D. (2000). Analysis of left-censored longitudinal data with application to viral load in HIV infection, Biostatistics, 1, 355-368 crossref(new window)

Klein, J. P., Pelz, C. and Zhang, M. J. (1999). Modelling random effects for censored data by a multivariate normal regression model, Biometrics, 55, 497-506 crossref(new window)

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 963-974 crossref(new window)

Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion), Journal of the Royal Statistical Society, Series B, 58, 619-678

Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions, Biometrika, 88, 987-1006 crossref(new window)

Lyles, R. H., Lyles, C. M. and Talyor, D. J. (2000). Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs, Journal of the Royal Statistical Society: Series C (Applied Statistics), 49, 485-497 crossref(new window)

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 545-554 crossref(new window)

Sakamoto, Y., Ishiguro, M. and Kitagawa, G. (1986). Akaike Information Criterion Statistics, KTK Scientific Publisher, Tokyo

Thiebaut, R. and Jacqmin-Gadda, H. (2004). Mixed models for longitudinal leftcensored repeated measures, Computer Methods and Programs in Biomedicine, 74, 255-260 crossref(new window)

Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data, Journal of the American Statistical Association, 69, 169-173 crossref(new window)