JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples
Kang, Suk-Bok; Han, Jun-Tae;
  PDF(new window)
 Abstract
In this paper, we derive the approximate maximum likelihood estimators of the shape parameter and the scale parameter in a Weibull distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We develop three modified empirical distribution function type tests for the Weibull distribution based on multiply Type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.
 Keywords
Approximate maximum likelihood estimator;goodness-of-fit test;modified normalized sample Lorenz curve;multiply Type-II censored sample;Weibull distribution;
 Language
English
 Cited by
1.
On the maximum likelihood estimators for parameters of a Weibull distribution under random censoring, Communications for Statistical Applications and Methods, 2016, 23, 3, 241  crossref(new windwow)
 References
1.
Aho, M., Bain, L. J. and Engelhardt, M. (1985). Goodness-of-fit tests for the Weibull distribution with unknown parameters and heavy censoring, Journal of Statistical Computation and Simulation, 21, 213-225 crossref(new window)

2.
Balakrishnan, N., Gupta, S. S. and Panchapakesan, S. (1995). Estimation of the location and scale parameters of the extreme value distribution based on multiply Type-Ⅱ censored samples, Com-munications in Statistics-Theory and Methods, 24, 2105-2125 crossref(new window)

3.
Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressive Type-Ⅱ censoring, Journal of Statistical Computation and Simu-lation, 74, 25-45 crossref(new window)

4.
Cho, Y. S., Lee, J. Y. and Kang, S. B. (1999). A study on distribution based on the transformed Lorenz curve, The Korean Journal of Applied Statistics, 12, 153-163

5.
Gibson, E. W. B. and Higgins, J. J. (2000). Gap-ratio goodness of fit tests for Weibull or extreme value distribution assumptions with left or right censored data, Communications in Statistics-Simulation and Computation, 29, 541-557 crossref(new window)

6.
Han, J. T. and Kang, S. B. (2006), Estimation for two-parameter Rayleigh distribution based on multiply Type-Ⅱ censored sample, Journal of the Korean Data & Information Science Society, 17, 1319-1328

7.
Kang, S. B. and Cho, Y. S. (2001). A study on distribution based on the normalized sample Lorenz curve, The Korean Communications in Statistics, 8. 185-192

8.
Kang, S. B. and Lee, H. J. (2006a). Goodness-of-fit tests for the Weibull distribution based on the sample entropy, Journal of the Korean Data & Information Science Society, 17, 259-268

9.
Kang, S. B. and Lee, S. K. (2006b). Test for the exponential distribution based on multiply Type-Ⅱ censored samples, The Korean Communications in Statistics, 13, 537-550 crossref(new window)

10.
Lieblein, J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings, Journal of Research of the National Bureau of Standards, 57, 273-316 crossref(new window)

11.
Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2004). Optimal progressive censoring plan for the Weibull distribution, Technometrics, 46, 470-481 crossref(new window)

12.
Sanjel, D. and Balakrishnan, N. (2008). A Laguerre polynomial approximation for a goodness-of-fit test for exponential distribution based on progressively censored data, Journal of Statistical Computation and Simulation, 78, 503-513 crossref(new window)

13.
Wang, B. (2008). Goodness-of-fit test for the exponential distribution based on progressively Type-Ⅱ censored sample, Journal of Statistical Computation & Simulation, 78, 125-132 crossref(new window)

14.
Wu, J. W. and Yang, C. C. (2002). Weighted moments estimation of the scale parameter of the exponential distribution based on a multiply Type -Ⅱ censored sample, Quality and Reliability Engineering International, 18, 149-154 crossref(new window)