JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparing Data Access Methods in Statistical Packages
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparing Data Access Methods in Statistical Packages
Kang, Gun-Seog;
  PDF(new window)
 Abstract
Recently, in addition to analyzing data with appropriate statistical methods, statistical analysts in the industrial fields face difficulties that they have to compose proper datasets for analysis objectives via extracting or generating processes from diverse data storage devices. In this paper we survey and compare many state-of-the-art data access technologies adopted by several commonly used statistical packages. More understanding of these technologies will help to reduce the costs occurring when analyzing large size of datasets in especially data mining works, and so to allow more time in applying statistical analysis methods.
 Keywords
Statistical packages;data access;database management system;
 Language
Korean
 Cited by
 References
1.
김형주 (2006). <데이터베이스 시스템>, 한국맥그로힐, 서울

2.
손건태, 안상옥 (2007). , 자유아카데미, 서울

3.
최종후 (2008). , 자유아카데미, 서울

4.
Microsoft (2009). Win32 and COM Development, MSDN Library, Available from http://msdn.microsoft.com/en-us/library/aa968814.aspx

5.
Minitab (2009). Data and File Management, Online Documentation, Available from http://www.minitab.com/products/minitab/features

6.
Oracle (2005). Oracle Business Intelligence: Concepts Guide, Online Documentation, http://download.oracle.com/docs/cd/B14099_19/bi.1012/b16378 .pdf

7.
R Development Core Team (2008). R Data Import/Export, Version 2.8.0, Available from http://cran.r-project.org/doc/manuals/R-data.html

8.
R Development Core Team (2009). The R interface packages, Available from http://cran.r-project.org/doc/manuals/R-data.html#R-interface-packages

9.
SAS Institute Inc. (1989). The Record Layout of a Data Set in SAS Transport (XPORT) Format, SAS Tech-nical Support document TS-140, http://support.sas.com/techsup/technote/ts140.pdf

10.
SAS Institute Inc. (2007). SAS In-Database Processing: A Roadmap for Deeper Technical Integration with Database Management Systems, Technical Paper, http://support.sas.com/resources/papers/InDatabase07.pdf

11.
SAS Institute Inc. (2008). SAS/ACCESS 9.2 for Relational Databases: Reference. Cary, NC: SAS Insti-tute Inc., Available from http://support.sas.com/documentation/cdl/en/acreldb/59618/PDF/default/acreldb.pdf

12.
SAS Institute Inc. (2009a). The New Data Integration Landscape: Moving beyond ad-hoc ETL to an enteiprise data integration strategy, White Paper, Available from http://support.sas.com/apps/whitepaper/index.jsp?cid=3498

13.
SAS Institute Inc. (2009b). SAS Data Surveyors, Online Documentation, Available from http://www.sas.com/technologies/dw/etl/surveyors

14.
Silberschatz, A., Korth, H. F. and Sudarshan, S. (2005). Database System Concepts, McGraw-Hill, New York

15.
SPSS Inc. (2008). Data Access Pack Installation Instructions for Windows, Online Documentation, Available from ftp://ftp.spss.com/pub/web/drivers/sdap/Documentation/SDAP/en-us/sdapwin.pdf

16.
Statsoft (2009a). STATISTICA Query, Online Documentation, Available from http://www.statsoft.com/uniquefeatures/query.html

17.
Statsoft (2009b). The In-Place Database Processing(IDP) Technology, Online Documentation, Available from http://www.statsoft.com/products/idp.html