Confidence Intervals for a Proportion in Finite Population Sampling

- Journal title : Communications for Statistical Applications and Methods
- Volume 16, Issue 3, 2009, pp.501-509
- Publisher : The Korean Statistical Society
- DOI : 10.5351/CKSS.2009.16.3.501

Title & Authors

Confidence Intervals for a Proportion in Finite Population Sampling

Lee, Seung-Chun;

Lee, Seung-Chun;

Abstract

Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.

Keywords

Wald interval;Agresti-Coull interval;Wilson interval;Weighted Polya posterior interval;exact interval;combined interval;hypergeometric distribution;

Language

English

References

1.

Agresti, A. and Coull, B. A. (1998). Approximation is better than 'exact' for interval estimation of binomial proportions, American Statistician, 52, 119-126

2.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, Springer, New York

3.

Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116

4.

Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133

5.

Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30, 160-201

6.

Casella, G. T., Hwang, T. G. and Robert, C. P. (1994). Loss functions for set estimation, Statistical Decision Theory and Related Topics V (Edited by S. S. Gupta and J. O. Berger), Springer-Verlag

7.

Cai, Y. and Krishnamoorthy, K. (2005). A simple improved inference methods for some discrete distributions, Computational Statistics & Data Analysis, 48, 605-621

8.

Clopper, C. J. and Pearson, E. S. (1936). The use of confidence or fiducial limits illustrated in the case of binomial, Biometriks, 26, 404-413

9.

Chocran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York

10.

Esty, W. E. and Banfield, J. D. (2003). The box-percentile plot, Journal of Statistical Software, 8, Issue 17

11.

Krishnamoorthy, K., Thomson, J. and Cai, Y. (2004), An exact method of testing equality of several binomial proportions to a specified standard, Computational Statistics & Data Analysis, 45, 697-707

12.

Kulkarni, P. M. and Shah, A. K. (1995). Testing the equality of several binomial proportions to prespecifled standard, Statistic & Probability Letter, 25, 213-219

13.

Lee, S.-C. (2005). Interval estimation of binomial proportions based on weighted Polya posterior, Computational Statistics & Data Analysis, 51, 1012-1021

14.

Lee, S,-C. (2009). Choosing between the exact and the asymptotic confidence intervals: For the difference of two independent binomial proportions, Communications of the Korean Statistical Society, 16, 363-372

15.

Meeden, G. D. (1999). Interval estimators for the population mean for skewed distributions with a small sample size, Journal of Applied Statistics, 26, 81-96

16.

Staner, T. J. (1998). A note on teaching binomial confidence intervals, Teaching Statistics, 20, 20-23

17.

Wilson, E. B. (1927). Probable inference, the law of succession and statistical inference, Journal of the American Statistical Association, 22, 209-212

18.

Yamane, T. (1967). Elementary Sampling Theory, Prentice-Hall Inc., Englewood Cliffs, New York