Advanced SearchSearch Tips
A Short Consideration of Binomial Confidence Interval
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Short Consideration of Binomial Confidence Interval
Ryu, Jea-Bok;
  PDF(new window)
The interval estimation for binomial proportion has been treated practically as well as theoretically for a long time. In this paper we compared the properties of major confidence intervals and summarized current issues for coverage probability and interval length which are the criteria of evaluation for confidence interval. Additionally, we examined the three topics which were considered in using the binomial confidence interval in the field. And finally we discussed the future studies for a low binomial proportion.
Binomial proportion;confidence interval;coverage probability;interval length;
 Cited by
이항자료에 대한 예측구간,류제복;

응용통계연구, 2013. vol.26. 6, pp.943-952 crossref(new window)
Confidence Interval for Sensitive Binomial Attribute : Direct Question Method and Indirect Question Method, Korean Journal of Applied Statistics, 2015, 28, 1, 75  crossref(new windwow)
On Prediction Intervals for Binomial Data, Korean Journal of Applied Statistics, 2013, 26, 6, 943  crossref(new windwow)
류제복, 이승주 (2006). 낮은 이항 비율에 대한 신뢰구간, <응용통계연구>, 19, 217-230

이승천 (2005). 이항비율의 가중 Polya Posterior 구간추정, <응용통계연구>, 18, 607-615

Agresti, A. and Coull, B. A. (1998). Approximate is better than “Exact” for interval estimation of Binomial proportions, The American Statistician, 52, 119-126 crossref(new window)

Angus, J. E. and Schafer, R. E. (1984). Improved confidence statements for the Binomial parameter, The American Statistician, 38, 189-191 crossref(new window)

Berry, G. and Armitage, P. (1995). Mid-P confidence intervals: A brief review, The Statistician, 44, 417-423 crossref(new window)

Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 crossref(new window)

Borkowf, C. B. (2006). Constructing binomial confidence intervals with near nominal coverage by adding a single imaginary failure or success, Statistics in Medicine, 25, 3679-3695 crossref(new window)

Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion), Statistical Science, 16, 101-133 crossref(new window)

Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30, 160-201 crossref(new window)

Brown, L. D., Cai, T. T. and DasGupta, A. (2003). Interval estimation in exponential families, Statistica Sinica, 13, 19-49

Casella, G. (1986). Refining binomial confidence intervals, The Canadian Journal of Statistics, 14, 113-129 crossref(new window)

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika, 26, 403-413 crossref(new window)

Crow, E. L. (1956). Confidence intervals for a proportion, Biometrika, 43, 423-435 crossref(new window)

Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the Binomial parameter, Journal of the American Statistical Association, 74, 894-900 crossref(new window)

Gray, A., Haslett, S. and Kuzmicich, G. (2004). Confidence intervals for proportions estimated from com-plex sample designs, Journal of Official Statistics, 20, 705-723

Hanley, J. A. and Lippman-Hand, A. (1983). If nothing goes wrong, Is everything all right?, Journal of the American Medical Association, 249, 1743-1745 crossref(new window)

Jovanovic, B. D. and Levy, P. S. (1997). A look at the rule of three, The American Statistician, 51, 137-139 crossref(new window)

Koit, P. S., Andersson, P. G. and Nerman, O. (2001). Two-sided coverage intervals for small proportions based on survey data, Federal Committee on Statistical Methodology Research Conference, 2001

Leemis, L. M. and Trivedi, K. S. (1996). A comparison of approximate interval estimators for the bernoulli parameters, The Amnerican Statistician, 50, 63-68 crossref(new window)

Miao, W. and Gastwirth, J. L. (2004). The effect of dependence on confidence intervals for a population proportion, The American Statistician, 58, 124-130 crossref(new window)

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: Comparison of seven methods, Statistics in Medicine, 17, 857-872 crossref(new window)

Reiczigel, J. (2003). Confidence intervals for a binomial parameter: Some new considerations, Statistics in Medicine, 22, 611-621 crossref(new window)

Santner, T. J. (1998). Teaching large-sample Binomial confidence intervals, Teaching Statistics, 20, 20-23 crossref(new window)

Schader, M. and Schmid, F. (1990). Charting small sample characteristics of asymptotic confidence inter-vals for the binomial parameter p, Statistical Papers, 31, 251-264 crossref(new window)

Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution, Sequential Methods in Statistics, 16, 485-514

Sterne, T. E. (1954). Some remarks on confidence or fiducial limits, Biometrika, 41, 275-278 crossref(new window)

Tuyl, R., Gerlach, R. and Mengersen, K. (2008). A comparison of Bayes-Laplace, Jeffreys, and other priors: The case of zero events, The American Statistician, 62, 40-44 crossref(new window)

Vollset, S. E. (1993). Confidence intervals for a binomial proportion, Statistics in Medicine, 12, 809-824 crossref(new window)

Wang, H. (2007). Exact confidence coefficients of confidence intervals for a binomial proportion, Statistica Sinica, 17, 361-368

Wang, H. (2009). Exact average coverage probabilities and confidence coefficients of confidence intervals for discrete distributions, Statistic and Computing, 19, 139-148 crossref(new window)

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference, Journal of the American Statistical Association, 22, 209-212 crossref(new window)

Winkler, R. L., Smith, J. E. and Fryback, D. G. (2002). The role of informative priors in zero-numerator problems: Being conservative versus being candid, The American Statistician, 56, 1-4 crossref(new window)

Woodroofe, M. (1986). Very weak expansions for sequential confidence levels, The Annals of Statistics, 14, 1049-1067 crossref(new window)