JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A General Procedure for Estimating the General Parameter Using Auxiliary Information in Presence of Measurement Errors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A General Procedure for Estimating the General Parameter Using Auxiliary Information in Presence of Measurement Errors
Singh, Housila P.; Karpe, Namrata;
  PDF(new window)
 Abstract
This article addresses the problem of estimating a family of general population parameter using auxiliary information in the presence of measurement errors. The general results are then applied to estimate the coefficient of variation of the study variable Y using the knowledge of the error variance associated with the study variable Y, Based on large sample approximation, the optimal conditions are obtained and the situations are identified under which the proposed class of estimators would be better than conventional estimator. Application of the main result to bivariate normal population is illustrated.
 Keywords
Study variate;auxiliary variate;measurement errors;coefficient of variation(CV);bias and mean square error;
 Language
English
 Cited by
1.
Finite Population Variance Estimation in Presence of Measurement Errors, Communications in Statistics - Theory and Methods, 2012, 41, 23, 4302  crossref(new windwow)
 References
1.
Allen, J., Singh, H. P. and Smarandache, F. (2003). A family of estimators of population mean using multiauxiliary information in presence of measurement errors, International Journal of Social Economics, 30, 837-849 crossref(new window)

2.
Birch, M. W. (1964). A note on the maximum likelihood estimation of a linear structural relationship, Journal of the American Statistical Association, 59, 1175-1178 crossref(new window)

3.
Cheng, C. L. and Van Ness, J. W. (1991). On the unreplicated ultra structural model, Biometrika, 78, 442-445 crossref(new window)

4.
Cheng, C. L. and Van Ness, J. W. (1994). On estimating linear relationships when both variables are subject to errors, Journal of the Royal Statistical Society, Series B., 56, 167-183

5.
Cochran, W. G (1968). Errors of measurement in statistics, Technometrics, 10, 637-666 crossref(new window)

6.
Das, A. K. and Tripathi, T. P. (1977). Admissible estimators for quadratic forms in finite populations, Bulletin of the International Statistical Institute, 47, 132-135

7.
Das, A. K. and Tripathi, T. P. (1978). Use of auxiliary information in estimating the finite population variance, Sankhya Series C, 40, 139-148

8.
Das, A. K. and Tripathi, T. P. (1981). A class of sampling strategies for population mean using information on mean and variance of an auxiliary character, In Proceedings of the Indian Sta-tistical Institute Golden Jubilee International conference on Statistics: Applications and New Directions, Calcutta 16 December-19 December, 1981, 174-181

9.
Das, A. K. and Tripathi, T. P. (1992-1993). Use of auxiliary information in estimating the coefficient of variation, Ali Garh Journal of Statistics, 12 & 13, 51-58

10.
Fuller, W. A. (1987). Measurement Errors Models, John Wiley & Sons, New York

11.
Liu, T. P. (1974). A general unbiased estimator for the variance of a finite population, Sankhya Series C, 36, 23-32

12.
Manisha and Singh, R. K. (2001). An estimation of population mean in the presence of measurement error, Journal of Indian Society of Agricultural Statistics, 54, 13-18

13.
Maneesha and Singh, R. K. (2002). Role of regression estimator involving measurement errors, Brazilian Journal of Probability and Statistics, 16, 39-46

14.
Schneewei\beta, H. M. (1976). Consistent estimation of a regression with errors in the variables, Metrika, 23, 101-105 crossref(new window)

15.
Searls, D. T. (1964). The utilization of a known coefficient of variation in the estimation procedure, Journal of American Statistical Association, 59, 1225-1226

16.
Searls, D. T. and Interapanich, P. (1990). A note on an estimator for the variance that utilizes the kurtosis, The American Statistician, 44, 195-296 crossref(new window)

17.
Shalabh (1997). Ratio method of estimation in the presence of measurement errors, Journal of Indian Society of Agricultural Statistics, 52, 150-155

18.
Shalabh (2000). Predictions of values of variables in linear measurement error model, Journal of Applied Statistics, 27, 475-482 crossref(new window)

19.
Singh, H. P. (1986). A generalized class of estimators of ratio, product and mean using supplementary information on an auxiliary character in PPSWR sampling scheme, Gujarat Statistical Review, 13, 1-30

20.
Singh, H. P. and Karpe, N. (2008a). Ratio-Product estimator for population mean in presence of measurement errors, Journal of Applied Statistical Science, 16, 49-64

21.
Singh, H. P. and Karpe, N. (2008b). Estimation of population variance using auxiliary information in the presence of measurement errors, Statistics in Transition, 9, 443-470

22.
Singh, H. P. and Karpe, N. (2009). A class of estimators using auxiliary information for estimating finite population variance in presence of Measurement Errors, Communications in Statistics - Theory and Methods, 38, 734-741 crossref(new window)

23.
Singh, H. P., Upadhyaya, L. N. and Nomjoshi, U. D. (1988). Estimation of finite population variance, Current Science, 57, 1331-1334

24.
Singh, H. P., Upadhyaya, L. N. and Iachan, R. (1990). An efficient class of estimators using supple-mentary information in sample surveys, Ali Garh Journal of Statistics, 10, 37-50

25.
Singh, J., Pandey, B. N. and Hirano, K. (1973). On the utilization of a known coefficient of kurtosis in the estimating procedure of variance, Annals of the Institute of Statistical Mathematics, 25, 51-55 crossref(new window)

26.
Srivastava, A. K. and Shalabh (1997). Asymptotic efficiency properties of least square in an ultra-structural model, Test, 6, 419-431 crossref(new window)

27.
Srivastava, A. K. and Shalabh (2001). Effect of measurement errors on the regression method of estimation in survey sampling, Journal of Statistical Research, 35, 35-44

28.
Srivastava, S. K. (1971). A generalized estimator for the mean of a finite population using multi-auxiliary information, Journal of the American Statistical Association, 6, 404-407

29.
Srivastava, S. K. (1980). A class of estimators using auxiliary information in sample surveys, Cana-dian Journal of Statistics, 8, 253-254 crossref(new window)

30.
Srivastava, S. K. and Jhajj, H. S. (1980). A class of estimators using auxiliary information for esti-mating finite population variance, Sankhya Series C, 4, 87-96

31.
Srivastava, S. K. and Jhajj, H. S. (1981). A class of estimating of the population mean in survey sampling using auxiliary information, Biometrika, 68, 341-343 crossref(new window)

32.
Sud, C. and Srivastava, S. K. (2000). Estimation of population mean in repeat surveys in the presence of measurement errors, Journal of Indian Society of Agricultural Statistics, 53, 125-133

33.
Tripathi, T. P, Singh, H. P. and Upadhyaya, L. N. (2002). A general method of estimation and its application to the estimation of coefficient of variation, Statistics in Transition, 5, 887-908

34.
Upadhyaya, L. N. and Singh, H. P. (1999). Use of transformed auxiliary variable in estimating the finite population mean, Biometrical Journal, 41, 627-636 crossref(new window)

35.
Upadhyaya, L. N. and Singh, H. P. (2001). Estimation of the population standard deviation using auxiliary information, American Journal of Mathematical and Management Sciences, 21, 345-358