JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimations in a Skewed Double Weibull Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimations in a Skewed Double Weibull Distribution
Son, Hee-Ju; Woo, Jung-Soo;
  PDF(new window)
 Abstract
We obtain a skewed double Weibull distribution by a double Weibull distribution, and evaluate its coefficient of skewness. And we obtain the approximate maximum likelihood estimator(AML) and moment estimator of skew parameter in the skewed double Weibull distribution, and hence compare simulated mean squared errors(MSE) of those estimators. We compare simulated MSE of two proposed reliability estimators in two independent skewed double Weibull distributions each with different skew parameters. Finally we introduce a skewed double Weibull distribution generated by a uniform kernel.
 Keywords
Approximate ML;double Weibull distribution;reliability;skew parameter;
 Language
English
 Cited by
1.
An approximate maximum likelihood estimator in a weighted exponential distribution,;;

Journal of the Korean Data and Information Science Society, 2012. vol.23. 1, pp.219-225 crossref(new window)
2.
Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution,;

Journal of the Korean Data and Information Science Society, 2012. vol.23. 6, pp.1213-1222 crossref(new window)
1.
An approximate maximum likelihood estimator in a weighted exponential distribution, Journal of the Korean Data and Information Science Society, 2012, 23, 1, 219  crossref(new windwow)
2.
Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution, Journal of the Korean Data and Information Science Society, 2012, 23, 6, 1213  crossref(new windwow)
 References
1.
Ali, M. M., Pal, M. and Woo, J. (2008). Skewed reflected distributions generated by reflected gamma kernel, Pakistan Journal of Statistics, 24, 77-86

2.
Ali., M. M. and Woo, J. (2006). Skew-symmetric reflected distributions, Soochow Journal of Math-matics, 32, 233-240

3.
Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandina Journal of Statistics, 12, 171-178

4.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skewed normal distribution, Journal of the Royal Statistics Society, Series B, 61, 579-605 crossref(new window)

5.
Balakrishnan, N. and Cohen, A. C. (1991). Order Statistics and Inference, Academic Press, New York

6.
Deitel, H. M. and Deitel, P. J. (2003). C++ How to Program, 4th Ed., Prentice Hall, New Jersey

7.
Gradshteyn, I. S. and Ryzhik, I. M. (1965). Tables of integral, Series, and Products, Academic Press, New York

8.
Han, J. T. and Kang, S. B. (2006). Estimation for the Rayleigh distribution with known parameter under multiple type-Il censoring, Journal of the Korean Data & Information Science Society, 17, 933-943

9.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, John Wiley & Sons, New York

10.
Son, H. and Woo, J. (2007a). The approximate MLE in a skew-symmetric Laplace distribution, Journal of the Korean Data & Information Science Society, 18, 573-584

11.
Son, H. and Woo, J. (2007b). Estimating skew parameter and reliability in a skew-symmetric double Rayleigh distribution, Journal of the Korean Data & Information Science Society, 18, 1205-1214

12.
Woo, J. (2007). Reliability in a half-triangle distribution and a skew-symmetric distribution, Journal of the Korean Data & Informailon Science Society, 18, 543-552