Advanced SearchSearch Tips
Comparison of Methods for Detecting and Quantifying Variation in Copy Numbers of Duplicated Genes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Methods for Detecting and Quantifying Variation in Copy Numbers of Duplicated Genes
Jeon, Jin-Tae; Ahn, Sung-Jin;
  PDF(new window)
Copy number variations(CNVs) are known as one of the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing real-time polymerase chain reaction(PCR), invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed. PCR followed by a quantitative oligonucleotide ligation assay(qOLA) was developed for quantifying CNVs. The aim of this study was to compare the two methods for detecting and quantifying the CNVs of duplicated gene: the published pyrosequencing assay(pyro_CNV) and the newly developed qOLA_CNV. The accuracy and precision of the assay were evaluated for porcine KIT, which was selected as a model locus. Overall, the root mean squares(RMSs) of bias and standard deviation of qOLA_CNV were 2.09 and 0.45, respectively. These values are less than half of those of pyro CNV.
Copy number variation;quantitative oligonucleotide ligation assay;pyrosequencing assay;root mean square;
 Cited by
Ahn, S. J. (2007). Statistical Quality Control using Minitab 14, Free Academy, Seoul, 260–262

Aldred, P. M., Hollox, E. J. and Armour, J. A. (2005). Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3, Human Molecular Genetics, 14, 2045–2052 crossref(new window)

Everitt, B. (1974). Cluster Analysis, Heinemann Educational Books, London

Giuffra, E., Evans, G., T$\ddot{o}$rnsten, A., Wales, R., Day, A., Looft, H., Plastow, G. and Andersson, L. (1999). The Belt mutation in pigs is an allele at the Dominant White (I/KIT) locus, Mammalian Genome, 10, 1132–1136 crossref(new window)

Hirooka, H., de Koning, D. J., van Arendonk, J. A. M., Harlizius, B., de Groot, P. N. and Bovenhuis, H. (2002). Genome scan reveals new coat color loci in exotic pig cross, Journal of Heredity, 93, 1–8

Johansson, M., Chaudhary R., Hellm´en, E., H¨oyheim, B., Chowdhary, B. and Andersson, L. (1996). Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor, Mammalian Genome, 7, 822–830 crossref(new window)

Johansson, M., Moller, M., Ellegren, H., Marklund, L., Gustavsson, U., Ringmar-Cederberg, E., Andersson, K., Edfors-Lilja, I. and Andersson, L. (1992). The gene for dominant white color in the pig is closely linked to ALB and PDGRFRA on chromosome 8, Genomics, 14, 965–969

Kehrer-Sawatzki, H. (2007). What a difference copy number variation makes, BioEssays, 29, 311–313 crossref(new window)

Marklund, S., Kijas, J., Rodriguez-Martinez, H., R$\ddot{o}$nnstrand, L., Funa, K., Moller, M., Lange, D., Edfors-Lilja, I. and, Andersson, L. (1998). Molecular basis for the dominant white phenotype in the domestic pig, Genome Research, 8, 826–833 crossref(new window)

Nevilie, M., Selzer, R., Aizenstein, B., Maguire, M., Hogan, K., Walton, R., Welsh, K., Neri, B. and de Arruda, M. (2002). Characterization of cytochrome P450 2D6 alleles using the Invader system, Biotechniques, Suppl 34–38, 40–43

Pielberg, G., Day, A. E., Plastow, G. S. and Andersson, L. (2003). A sensitive method for detecting variation in copy numbers of duplicated genes, Genome Research, 13, 2171–2177

Pielberg, G., Olsson, C., Syv¨anen, A. C. and Andersson, L. (2002). Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig, Genetics, 160, 305–311

Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., Gonz´alez, J. R., Gratac`os, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., Marshall, C. R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J., Valsesia, A.,Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W. and Hurles, M. E. (2006). Global variation in copy number in the human genome, Nature, 444, 444–454 crossref(new window)

SAS Institute Inc. (2004). SAS/STAT 9.1 user's guide Volume 6. SAS Institute, Cary, N.C., 1377–1427

Stranger, B. E., Forrest, M. S., Dunning, M., Ingle, C. E., Beazley, C., Thorne, N., Redon, R., Bird, C. P., de Grassi A, Lee, C., Tyler-Smith, C., Carter, N., Scherer, S. W., Tavar´e, S., Deloukas, P., Hurles, M. E. and Dermitzakis, E. T. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes, Science, 315, 848–853 crossref(new window)

Westgard, J. O. and Hunt, M. R. (1973). Use and interpretation of common statistical tests in method comparison studies, Clinical Chemistry, 19, 49–57