JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Efficient Use of Auxiliary Variables in Estimating Finite Population Variance in Two-Phase Sampling
Singh, Housila P.; Singh, Sarjinder; Kim, Jong-Min;
  PDF(new window)
 Abstract
This paper presents some chain ratio-type estimators for estimating finite population variance using two auxiliary variables in two phase sampling set up. The expressions for biases and mean squared errors of the suggested c1asses of estimators are given. Asymptotic optimum estimators(AOE`s) in each class are identified with their approximate mean squared error formulae. The theoretical and empirical properties of the suggested classes of estimators are investigated. In the simulation study, we took a real dataset related to pulmonary disease available on the CD with the book by Rosner, (2005).
 Keywords
Finite population variance;auxiliary variables;two phase sampling;bias and mean squared error;
 Language
English
 Cited by
1.
The generalized family of estimators of population mean using auxiliary information in double sampling, Communications in Statistics - Theory and Methods, 2016, 45, 14, 4086  crossref(new windwow)
2.
A Study on the Chain Ratio-Type Estimator of Finite Population Variance, Journal of Probability and Statistics, 2014, 2014, 1  crossref(new windwow)
3.
A new procedure for variance estimation in simple random sampling using auxiliary information, Statistical Papers, 2013, 54, 2, 479  crossref(new windwow)
 References
1.
Chand, L. (1975). Some Ratio-Type Estimatiors Based on Two or more Auxiliary Variables, Ph. D. dissertation, Iowa State University, Ames, Iowa.

2.
Das, A. K. and Tripathi, T. P. (1978). Use of auxiliary information in estimating the finite population variance, Sankhya, C, 40, 139-148.

3.
Farrell, P. and Singh, S. (2010). Some contributions to Jackknifing Two-Phase sampling estimatiors, Survey Methodology, In Press.

4.
Glesser, L. J. and Hearly, J. D. (1976). Estimating the mean of a normal distribution with known coefficient of variation, Journal of the American Statistical Association, 71, 977-981. crossref(new window)

5.
Gupta, R. K., Singh, S. and Mangat, N. S. (1992-1993). Some chain ratio type estimatiors for estimating finite population variance, Aligarh Journal of Statistics, 12&13, 65-69. crossref(new window)

6.
Isaki, C. T. (1983). Variance estimation using auxiliary information, Journal of the American Statistical Association, 78, 115-123.

7.
Kiregyera, B. (1980). A chain ratio-type estimator in finite population double sampling using two auxiliary variables, Metrika, 27, 217-223. crossref(new window)

8.
Lee, K. H. (1981). Estimation of variance of mean using known coefficient of variation, Communications ins Statistice-Theory and Methods, 10, 503-514. crossref(new window)

9.
Mukerjee, R., Rao, T. J. and Vijayan, K. (1987). Regression type estimators using multiple auxiliary information, Australian & New Zealand Journal of Statistics, 29, 244-254.

10.
Murthy, M. N. (1967). Sampling Theory and Methods, Calcutta Statist, Publishing Society.

11.
Rosner, B. (2005). Fundamentals of Biostatistics, Thomsoz-Brooks/Cole, 6rd Ed.

12.
Rueda, M., Arcos, A., Munoz, J. F. and Singh, S. (2007). Quantile estimation in two-phase sampling, Computational Statistics & Data Analysis, 51, 2559-2572. crossref(new window)

13.
Searls, D. T. (1964). Utilization of a known coefficient of variation in the estimation procedure, Journal of the American Statistical Association, 59, 1225-1228. crossref(new window)

14.
Searls, D. T. and Intarapanich, P. (1990). A note on an estimator for the variance that utilizes the kurtosis, The American Statistician, 44, 295-296.

15.
Singh, H. P., Singh, S. and Kin, J.-M. (2006). General families of chain ratio type estimators of the population mean with known coefficient of variation of the second auxiliary varible in two phase sampling, Journal of the Korean Statistical Society, 35, 377-395.

16.
Singh, S. (1990). Estimation of finite population variance using double sampling, The Aligarh Journal of Statistics, 11, 53-56.

17.
Singh, S., Horn, S., Chowdhury, S. and Yu, F. (1999). Calibration of the estimators of variance, Australian & New Zealand Journal of Statistics, 41, 199-212. crossref(new window)

18.
Singh, S., Singh, H. P., Tailor, R., Allen, J. and Kazak, M. (2009). Estimation of ratio of two finitep-population means in the presence of non-response, Communications in Statistics-Theory and Methods, 38, 3608-3621. crossref(new window)

19.
Singh, V. K., Singh, H. P. and Singh, H. P. (1994). A general class of chain estimators for ratio and product of two means of a finite population, Communications in Statistics-Thoery and Methods, 23, 1341-1355. crossref(new window)

20.
Srivastava, S. K. (1967). An estimator using auxiliary information in sample surveys, Calcutta Statistical Association Buletin, 16, 121-132.

21.
Srivastava, S. K. (1980). A class of estimators using auxiliary information in sample surveys, The Canadian Journal of Statistics, 8, 253-254. crossref(new window)

22.
Srivastava, S. K. and Jhajj, H. S. (1980). A class of estimatiors using auxiliary information for estimationg finite population variance, Sankhya C, 42, 87-96.

23.
Srivastava, S. R., Srivastava, S. p. and Khare, B. B. (1989). Chain ratio type estimator for ratio of two population means using auxiliary characters, Communications in Statistics-Theory and Methods, 18, 3917-3926. crossref(new window)

24.
Upadhyaya, L. N., Kushwaha, K. S. and Singh, H. P. (1990). A modified chain ratio-type estimaor in two-phase sampling using multi-auxiliary information, Metron, 48, 381-393.