Advanced SearchSearch Tips
Cumulative Impulse Response Functions for a Class of Threshold-Asymmetric GARCH Processes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Cumulative Impulse Response Functions for a Class of Threshold-Asymmetric GARCH Processes
Park, J.A.; Baek, J.S.; Hwang, S.Y.;
  PDF(new window)
A class of threshold-asymmetric GRACH(TGARCH, hereafter) models has been useful for explaining asymmetric volatilities in the field of financial time series. The cumulative impulse response function of a conditionally heteroscedastic time series often measures a degree of unstability in volatilities. In this article, a general form of the cumulative impulse response function of the TGARCH model is discussed. In particular, We present formula in their closed forms for the first two lower order models, viz., TGARCH(1, 1) and TGARCH(2, 2).
Cumulative impulse response function;persistent;asymmetric-TGARCH;
 Cited by
Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O. (1996). Fractionally integrated generalized autore-gressive conditional heteroskedasticity, Journal of Econometrics, 74, 3-30. crossref(new window)

Blockewell. P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer-Verlag, New York.

Bollerslev, T. (1986). Generalized autoegressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. crossref(new window)

Conrad, C. and Karanasos, M. (2006). The impulse response function of the long memory GARCH process, Economics Letters, 90, 34-41. crossref(new window)

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1008. crossref(new window)

Hwang, S. W. and Basawa, I. V. (2004). Stationarity and moment structure for Box-Cox transformed threshold GARCH(1, 1) processes, Statistics & Probability Letters, 68, 209-220. crossref(new window)

Hwang, S. Y., Baek, J. S., Park, J. A. and Choi, M. S. (2010). Explosive volatilities for the threshold GARCH processes generated by asymmetric innovations, Statistics & Probability Letters, 80, 26-33. crossref(new window)

Li, C. W. and Li, W. K. (1996). On an double-threshold autoregressive heteroscedastic time series model, Journal of Applied Econometrics, 11, 253-274. crossref(new window)

Liu, J. C. (2006). On the tail behaviors of Box-Cox transformed threshold GARCH(1, 1) process, Statistics & Probability Letters, 76, 1323-1330. crossref(new window)

Pan, J. Z., Wang, H. and Tong, H. (2008). Estimation and tests for power-transformed and threshold GARCH models, Journal of Econometrics, 142, 352-378. crossref(new window)

Park, J. A., Baek, J. S. ,and Hwang, S. Y. (2009). Persistent threshold-GARCH processes: Model and application, Statistics & Probability Letters, 79, 907-914. crossref(new window)

Rabemananjara, R. and Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49. crossref(new window)