JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on International Passenger and Freight Forecasting Using the Seasonal Multivariate Time Series Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on International Passenger and Freight Forecasting Using the Seasonal Multivariate Time Series Models
Yoon, Ji-Seong; Huh, Nam-Kyun; Kim, Sahm-Yong; Hur, Hee-Young;
  PDF(new window)
 Abstract
Forecasting for air demand such as international passengers and freight has been one of the main interests for air industries. This research has mainly focus on the comparison of the performances of the multivariate time series models. In this paper, we used real data such as exchange rates, oil prices and export amounts to predict the future demand on international passenger and freight.
 Keywords
International passengers;international freight;forecasting;seasonal VAR model;
 Language
Korean
 Cited by
1.
관광 수요 예측 모형의 계절효과에 대한 연구,김삼용;이주형;

응용통계연구, 2011. vol.24. 1, pp.93-102 crossref(new window)
2.
관광 수요를 위한 결합 예측 모형에 대한 연구,손흥구;하명호;김삼용;

응용통계연구, 2012. vol.25. 2, pp.251-259 crossref(new window)
3.
Performance Evaluation of Time Series Models using Short-Term Air Passenger Data,;;

응용통계연구, 2012. vol.25. 6, pp.917-923 crossref(new window)
4.
Markov Chain을 이용한 국내 폐차발생량 예측,이은아;최회련;이홍철;

대한산업공학회지, 2012. vol.38. 3, pp.208-219 crossref(new window)
5.
계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로,민경창;전영인;하헌구;

대한교통학회지, 2013. vol.31. 3, pp.3-18 crossref(new window)
6.
계절 ARIMA 모형을 활용한 농촌관광 수요예측에 관한 연구 -양평 외갓집 체험마을을 중심으로-,황경후;

농어촌관광연구, 2014. vol.21. 1, pp.39-54
1.
A Study on the Forecasting of the Number of End of Life Vehicles in Korea using Markov Chain, Journal of Korean Institute of Industrial Engineers, 2012, 38, 3, 208  crossref(new windwow)
2.
Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route, Journal of Korean Society of Transportation, 2013, 31, 3, 3  crossref(new windwow)
3.
A Study on the Tourism Combining Demand Forecasting Models for the Tourism in Korea, Korean Journal of Applied Statistics, 2012, 25, 2, 251  crossref(new windwow)
4.
Performance Evaluation of Time Series Models using Short-Term Air Passenger Data, Korean Journal of Applied Statistics, 2012, 25, 6, 917  crossref(new windwow)
5.
A Study on the Seasonal Effects of the Tourism Demand Forecasting Models, Korean Journal of Applied Statistics, 2011, 24, 1, 93  crossref(new windwow)
 References
1.
곽우심 (2006). 수요예측 이론에 의한 여객운송수요 적용사례 연구, <한국항공대학교 경영대학원 석사학위논문>.

2.
백승한, 김성수 (2008). 제주-내륙간 국내선 항공여객 수요 모형 및 탄력성의 추정, <대한교통학회지>, 26, 51-63.

3.
진학기 (2002). 시계열자료를 이용한 국제 항공화물 수요예측, <한양대학교 대학원 석사학위논문>.

4.
허남균, 정재윤, 김삼용 (2009). 다변량 시계열모형을 이용한 항공 수요 예측 연구, <응용통계연구>, 22, 1007-1017.

5.
Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis Forecasting and Control, 1st, Holden-Day Inc, San Fransisco.

6.
Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction representation, Econometrica, 59, 1551-1580. crossref(new window)

7.
Johansen, S. (1988). Statistical analysis of co-integration vectors, Journal of Economic Dynamics and Control, 12, 231-254. crossref(new window)

8.
Granger, C.W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing, Journal of Time Series Analysis, 1, 15-30. crossref(new window)

9.
Sims, C. A. (1980). Macroeconomincs and reality, Econometrica, 48, 1-48. crossref(new window)