JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Computing the Ruin Probability of Lévy Insurance Risk Processes in non-Cramér Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Computing the Ruin Probability of Lévy Insurance Risk Processes in non-Cramér Models
Park, Hyun-Suk;
  PDF(new window)
 Abstract
This study provides the explicit computation of the ruin probability of a Le¢vy process on finite time horizon in Theorem 1 with the help of a fluctuation identity. This paper also gives the numerical results of the ruin probability in Variance Gamma(VG) and Normal Inverse Gaussian(NIG) models as illustrations. Besides, the paths of VG and NIG processes are simulated using the same parameter values as in Madan et al. (1998).
 Keywords
Levy processes;failure time;Ruin probability;Variance Gamma;Normal Inverse Gaussian;Wiener-Hopf factorization;
 Language
English
 Cited by
1.
보험위험 확률모형에서의 파산확률,박현숙;최정규;

응용통계연구, 2011. vol.24. 4, pp.575-586 crossref(new window)
2.
이단계 보험요율의 복합 포아송 위험 모형의 파산 확률,송미정;이지연;

Communications for Statistical Applications and Methods, 2011. vol.18. 4, pp.433-443 crossref(new window)
1.
Ruin Probability on Insurance Risk Models, Korean Journal of Applied Statistics, 2011, 24, 4, 575  crossref(new windwow)
2.
Ruin Probability in a Compound Poisson Risk Model with a Two-Step Premium Rule, Communications for Statistical Applications and Methods, 2011, 18, 4, 433  crossref(new windwow)
 References
1.
Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Levy processes, the Americal put and pasting principles, The Annals of Applied Probability, 15, 2062-2079. crossref(new window)

2.
Bertoin, J. (1996). Levy Processes, Cambridge University Press.

3.
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation, Cambridge University Press, Cambridge.

4.
Doney, R. A. and Kyprianou, A. (2006). Overshoots and undershoots of Levy processes, The Annals of Applied Probability, 16, 91-106. crossref(new window)

5.
Embrechts, P., Goldie, C. M. and Veraverbeke, N. (1979). Subexponentiality and infinite divisibility, Probability Theory and Related Fields, 49, 335-347.

6.
Fishman, G. S. (1996). Monte Carlo Methods: Concepts, Algorithms, and Applications, Springer.

7.
Grandell, J. (1991). Aspects of Risk Theory, Springer-Verlag, New York.

8.
Kluppelberg, C. (1989). Subexponential distributions and characterizations of related classes, Probability Theory and Related Fields, 82, 259-269. crossref(new window)

9.
Kluppelberg, C., Kyprianou, A. and Maller, R. (2004). Ruin probability and overshoots for general Levy insurance risk processes, The Annals of Applied Probability, 14, 1766-1801.

10.
Madan, D., Carr, P. and Chang, E. (1998). The variance gamma process and option pricing model, European Finance Review, 2, 79-105. crossref(new window)

11.
Madan, D. and Milne, F. (1991). Option pricing with VG martingale components, Mathematical Finance, 1, 39-55. crossref(new window)

12.
Madan, D. and Seneta, E. (1990). The variance gamma process model for share market returns, Journal of Business, 63, 511–524.

13.
Maller, R., Solomon, D. and Szimayer, A. (2006). A multinomial approximation for American option prices in Levy process models, Mathematical Finance, 160, 613-633.

14.
Park, H. S. and Maller, R. (2008). Moment and MGF convergence of overshoots and undershoots for Levy insurance risk processes, Advances in Applied Probability, 40, 716-733. crossref(new window)

15.
Sato, K. (1999). Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge.