JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Power Comparison of Independence Test for the Farlie-Gumbel-Morgenstern Family
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Power Comparison of Independence Test for the Farlie-Gumbel-Morgenstern Family
Amini, M.; Jabbari, H.; Mohtashami Borzadaran, G.R.; Azadbakhsh, M.;
  PDF(new window)
 Abstract
Developing a test for independence of random variables X and Y against the alternative has an important role in statistical inference. Kochar and Gupta (1987) proposed a class of tests in view of Block and Basu (1974) model and compared the powers for sample sizes n
 Keywords
Negative and positive quadrant dependence;Farlie-Gambel-Morgenstern distribution;U-Statistics;
 Language
English
 Cited by
1.
Aspects of Dependence in Generalized Farlie-Gumbel-Morgenstern Distributions, Communications in Statistics - Simulation and Computation, 2011, 40, 8, 1192  crossref(new windwow)
 References
1.
Bairamov, I. and Kotz, S. (2002). Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions, Metrika, 56, 55-72. crossref(new window)

2.
Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential extension, Journal of the American Statistical Association, 69, 1031-1037. crossref(new window)

3.
Farlie, D. J. G. (1960). The performance of some correlation coefficients for a general bivariate distribution function, Biometrika, 47, 307-323. crossref(new window)

4.
Gibbons, J. D. (1971). Nonparametric Statistical Inference, MaGraw-Hill.

5.
Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.

6.
Guven, B. and Kotz, S. (2008). Test of independence for generalized Farlie-Gumbel-Morgenstern distributions, Journal of Computational and Applied Mathemathics, 212, 102-111. crossref(new window)

7.
Hanagal, D. D. and Kale, B. K. (1991). Large sample tests of independence for absolutely continuous bivariate exponential distribution, Communications in Statistics - Theory and Methods, 20, 1301-1313. crossref(new window)

8.
Kochar, S. G. and Gupta, R. P. (1987). Competitors of Kendall-tau test for testing independence against PQD, Biometrika, 74, 664-669. crossref(new window)

9.
Kochar, S. G. and Gupta, R. P. (1990). Distribution-free tests based on sub-sample extrema for testing against positive dependence, Australian Journal of Statistics, 32, 45-51. crossref(new window)

10.
Koroljuk, V. S. and Borovskich, Y. V. (1994). Theory of U-statistic, Kluwer Academic Publishers.

11.
Lehmann, E. L. (1966). Some concepts of dependence, The Annals of Mathematical Statistics, 37, 1137-1153. crossref(new window)

12.
Mari, D. D. and Kotz, S. (2001). Correlation and Dependence, Imperical College Press.

13.
Modarres, R. (2007). A test of independence based on the likelihood of Cut-Points, Communicationa in Statistics-Simulation and Computation, 36, 817-825. crossref(new window)

14.
Morgenstern, D. (1956). Einfache Beispiele Zweidimensionaler Verteilungen, Mitteilungsblatt fur Mathematische Statistik, 8, 234-235.

15.
Serfling, R. J. (1980). Approximations Theorems of Mathematical Statistics, John Wiley & Sons.

16.
Shetty, I. D. and Pandit, P. V. (2003). Distribution-free tests for independence against positive quadrant dependence: A generalization, Statistical Methods and Application, 12, 5-17. crossref(new window)