JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study for Improving the Performance of Data Mining Using Ensemble Techniques
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study for Improving the Performance of Data Mining Using Ensemble Techniques
Jung, Yon-Hae; Eo, Soo-Heang; Moon, Ho-Seok; Cho, Hyung-Jun;
  PDF(new window)
 Abstract
We studied the performance of 8 data mining algorithms including decision trees, logistic regression, LDA, QDA, Neral network, and SVM and their combinations of 2 ensemble techniques, bagging and boosting. In this study, we utilized 13 data sets with binary responses. Sensitivity, Specificity and missclassificate error were used as criteria for comparison.
 Keywords
Ensemble;bagging;boosting;data mining;
 Language
Korean
 Cited by
1.
앙상블 학습을 이용한 적조 발생 예측의 성능향상,박선;정민아;이성로;

대한전자공학회논문지SP, 2012. vol.49. 1, pp.41-48
2.
부스팅 트리에서 적정 트리사이즈의 선택에 관한 연구,김아현;김지현;김현중;

Journal of the Korean Data and Information Science Society, 2012. vol.23. 5, pp.949-959 crossref(new window)
3.
효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구,이준석;

디지털융복합연구, 2014. vol.12. 11, pp.257-264 crossref(new window)
1.
A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing, Journal of Digital Convergence, 2014, 12, 11, 257  crossref(new windwow)
 References
1.
김규곤 (2003). 데이터 마이닝에서 분류방법에 관한 연구, Journal of the Korean Data Analysis Society, 5, 101-112.

2.
김기영, 전명식 (1994). <다변량 통계자료분석>, 자유아카데미, 서울.

3.
이영섭, 오현정, 김미경 (2005). 데이터 마이닝에서 배깅, 부스팅, SVM 분류 알고리즘 비교 분석, <응용통계연구>, 18, 343-354. crossref(new window)

4.
허면회, 서혜선 (2001). , 자유아카데미, 서울.

5.
Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, Boosting and variants, Machine Learning, 36, 105-139. crossref(new window)

6.
Breiman, L. (1996). Bagging predictors, Machine Learning, 26, 123-140.

7.
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees, Chapman & Hall, New York.

8.
Clemen, R. (1989). Combining forecasts: A review and annotated bibliography, Journal of Forecasting, 5, 559-583. crossref(new window)

9.
Drucker, H. and Cortes, C. (1996). Boosting decision trees, Neural Information Processing Systems, 8, 470-485.

10.
Druker, H., Schapire, R. and Simard, P. (1993). Boosting performance in neural networks, International Journal of Pattern Recognition and Artificial Intelligence, 7, 705-719. crossref(new window)

11.
Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman & Hall, New York.

12.
Frank, A. and Asuncion, A. (2010). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

13.
Freund, Y. (1995). Boosting a weak learning algorithm by majority, Information and Computation, 121, 256-285. crossref(new window)

14.
Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm, Proceedings of the Thirteenth International Conference on Machine Learning, 148-156.

15.
Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29, 119-127.

16.
Kearns, M. and Valiant, L. G. (1994). Cryptographic limitations on learning Boolean formulae and finite automata, Journal of the Association for Computing Machinery, 41, 67-95. crossref(new window)

17.
Kim, H. J. and Loh, W. Y. (2001). Classification trees with unbiased multiway splits, Journal of the American Statistical Association, 96, 598-604.

18.
Loh, W. Y. and Shih, Y. S. (1997). Split selection method for classification trees, Statistica Sinica, 7, 815-840.

19.
Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study, Journal of the Artificial Intelligence Research, 11, 169-198.

20.
Perrone, M. (1993). Improving regression estimation: Averaging methods for variance reduction with extensions to general convex measure optimization, Doctoral dissertation, Department of Physics, Brown University.

21.
Quinlan, J. R. (1992). C4.5 : Programming with Machine Learning, Morgan Kaufmann Publishers.

22.
Quinlan, J. R. (1996). Bagging, boosting, and C4.5, Proceedings of the Fourteenth National Conference on Machine Learning, 725-730.

23.
Schapire, R. E. (1990). The strength of weak learnability, Machine Learning, 5, 197-227.

24.
Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions, Machine Learning, 37, 297-336. crossref(new window)

25.
Valiant, L. G. (1984). A theory of the learnable, Communication of the ACM, 27, 1134-1142. crossref(new window)

26.
Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data, Nauka, Moscow.

27.
Wolpert, D. (1992). Stacked generalization, Neural Network, 5, 241-259. crossref(new window)