JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis
Choi, Tae-Hoon; Choi, Yong-Seok;
  PDF(new window)
 Abstract
The canonical correlation biplot is a 2-dimensional plot for graphically investigating the relationship between two sets of variables and the relationship between observations and variables in the canonical correlation analysis. Recently, Choi and Choi (2008) suggested a method for investigating the relationship between skill and competition score factors of KLPGA players using this biplot. Choi et al. (2010) used this biplot to analyze the player characteristic factors and competitive factors of tennis Grand Slam competition. Moreover, Huh (1999) provided a generalized canonical correlation analysis and biplot for more than three sets of variables. A Procrustes analysis is a useful tool for comparing shapes between configurations. This study will provide a method to investigate the relationship between physique, physical fitness and basic skill factors of tennis players in the Korea Tennis Association using a generalized canonical correlation biplot and Procrustes analysis.
 Keywords
Biplot;generalized canonical correlation analysis;tennis players;Procrustes analysis;
 Language
Korean
 Cited by
1.
편정준상관 행렬도,염아림;최용석;

응용통계연구, 2011. vol.24. 3, pp.559-566 crossref(new window)
2.
Semi-Partial Canonical Correlation Biplot,;;;

응용통계연구, 2012. vol.25. 3, pp.521-529 crossref(new window)
3.
공변량요인 효과를 제거한 편정준상관 행렬도와 프로크러스티즈 분석을 응용한 남자 테니스선수의 체력요인 및 기초기술요인에 대한 분석연구,최태훈;최용석;

Communications for Statistical Applications and Methods, 2012. vol.19. 1, pp.97-105 crossref(new window)
1.
Semi-Partial Canonical Correlation Biplot, Korean Journal of Applied Statistics, 2012, 25, 3, 521  crossref(new windwow)
2.
Partial Canonical Correlation Biplot, Korean Journal of Applied Statistics, 2011, 24, 3, 559  crossref(new windwow)
 References
1.
최용석(2006). <행렬도분석>, 기초과학 총서 2권,부산대학교 기초과학연구원.

2.
최용석, 강창완, 김경덕 (2005c). 명목형 다항반응 로지스틱회귀모형의 행렬도 분석, Journal of The Korean Data Analysis Society, 7, 839–849.

3.
최용석, 현기홍 (2006). <통계적 형상분석의 이해와 응용 -프로크러스티즈 분석의 저항성 버전 연구 및 개발->, 자유아카데미, 서울.

4.
최용석, 현기홍,정수미 (2005a). 다변량 분산분석에서 추정된 모수행렬의 행렬도, Journal of The Korean Data Analysis Society, 7, 851–858.

5.
최용석, 현기홍,정수미(2005b). MANCOVA Biplot, <한국통계학논문집>, 12, 705–712. crossref(new window)

6.
최태훈(2004). 테니스선수의 체격, 체력, 기초기술과 랭킹간의 관계, 국민대학교, 박사학위논문.

7.
최태훈, 최용석 (2008). 정준상관 행렬도와 군집분석을 응용한 KLPGA 선수의 기술과 경기성적요인에 대한 연관성분석. <응용통계연구>, 21, 429–439. crossref(new window)

8.
최태훈, 최용석, 신상민 (2009). 테니스 그랜드슬램 대회의 선수 특성요인과 경기요인에 대한 분석연구-정준상관 행렬도와 프로크러스티즈 분석의 응용-, <응용통계연구>, 22, 855–864.

9.
허명회(1993). <統計相談의 이해>, 자유아카데미, 서울.

10.
허명회(1999). <다변량수량화>, 자유아카데미, 서울.

11.
Choi, Y. S. (1991). Resistant Principal Component Analysis, Biplot and Correspondence Analysis, Unpublished Ph.D. Dissertation, Department of Statistics, Korea University.

12.
Choi, Y. S., Hyun, G. H. and Kim, J. G. (2005a). A numerical comparison of map variability in SCA Using the Procrustes Analysis, Journal of the Korean Data Analysis Society, 7, 1531–1538.

13.
Choi, Y. S., Hyun, G. H. and Yun, W. J. (2005b). Biplots' variability based on the Procrustes analysis, Journal of the Korean Data Analysis Society, 7, 1925–1933.

14.
Choi, Y. S. and Kim, H. Y. (2008). Applications of cluster analysis in biplots, The Korean Communications in Statistics, 15, 65–76. crossref(new window)

15.
Gabriel, K. R. (1971). The biplot graphics display of matrices with applications to principal component analysis, Biometrika, 58, 453–467.

16.
Park, M. and Huh, M. H. (1996a). Canonical correlation biplot, The Korea Communications in Statistics, 3(1), 11–19.

17.
Park, M. and Huh, M. H. (1996b). Quantification plots for several sets of variables, Journal 1973of the Korea Statistical Society, 25, 599–601.