JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Influence of Extreme Value in Binomial Confidence Interval
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Influence of Extreme Value in Binomial Confidence Interval
Ryu, Jea-Bok;
  PDF(new window)
 Abstract
Several methods are used in interval estimation for binomial proportion; however the coverage probabilities of most confidence intervals depart from the confidence level when the binomial population proportion closes to 0 or 1 due to the extreme value. Vollset (1993), Agresti and Coull (1998), Newcombe (1998), and Brown et al. (2001) suggested methods to adjust the extreme value. This paper discusses the influence of extreme value in a binomial confidence interval through the numerical comparison of 6 confidence intervals.
 Keywords
Binomial proportion;confidence interval;extreme value;coverage probability;expected width;
 Language
Korean
 Cited by
1.
이항자료에 대한 예측구간,류제복;

응용통계연구, 2013. vol.26. 6, pp.943-952 crossref(new window)
2.
민감한 이항특성에 대한 신뢰구간 : 직접질문법과 간접질문법,류제복;

응용통계연구, 2015. vol.28. 1, pp.75-82 crossref(new window)
1.
Confidence Interval for Sensitive Binomial Attribute : Direct Question Method and Indirect Question Method, Korean Journal of Applied Statistics, 2015, 28, 1, 75  crossref(new windwow)
2.
On Prediction Intervals for Binomial Data, Korean Journal of Applied Statistics, 2013, 26, 6, 943  crossref(new windwow)
 References
1.
류제복 (2010). Wald 신뢰구간에서 극단값 조정의 효과, <산업과학연구>, 28, 29-34.

2.
류제복, 이승주 (2006). 낮은 이항 비율에 대한 신뢰구간, <응용통계연구>, 19, 217-230. crossref(new window)

3.
Agresti, A. and Coull, B. A. (1998). Approximate is better than "Exact" for interval estimation of Binomial proportions, The American Statistician, 52, 119-126. crossref(new window)

4.
Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116. crossref(new window)

5.
Borkowf, C. B. (2006). Constructing binomial confidence intervals with near nominal coverage by adding a single imaginary failure or success, Statistics in Medicine, 25, 3679-3695. crossref(new window)

6.
Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion), Statistical Science, 16, 101-133. crossref(new window)

7.
Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30, 160-201. crossref(new window)

8.
Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika, 26, 403-413. crossref(new window)

9.
Ghosh, B. K.(1979). A comparison of some approximate confidence intervals for the Binomial parameter, Journal of the American Statistical Association, 74, 894-900. crossref(new window)

10.
Jovanovic, B. D. and Levy, P. S. (1997). A look at the Rule of three, The American Statistician, 51, 137-139. crossref(new window)

11.
Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: Comparison of seven methods, Statistics in Medicine, 17, 857-872. crossref(new window)

12.
Schader, M. and Schmid, F. (1990). Charting small sample characteristics of asymptotic confidence intervals for the binomial parameter, Statistical Papers, 31, 251-264. crossref(new window)

13.
Vollset, S. E. (1993). Confidence intervals for a binomial proportion, Statistics in Medicine, 12, 809-824. crossref(new window)

14.
Wilson, E, B. (1927). Probable inference, the law of succession, and statistical inference, Journal of the American Statistical Association, 22, 209-212. crossref(new window)