Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

- Journal title : Communications for Statistical Applications and Methods
- Volume 18, Issue 5, 2011, pp.657-666
- Publisher : The Korean Statistical Society
- DOI : 10.5351/CKSS.2011.18.5.657

Title & Authors

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

Kang, Suk-Bok; Seo, Jung-In;

Kang, Suk-Bok; Seo, Jung-In;

Abstract

In this paper, we derive the maximum likelihood estimator(MLE) and some approximate maximum likelihood estimators(AMLEs) of the scale parameter in an exponentiated half logistic distribution based on progressively Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error(MSE) through a Monte Carlo simulation for various censoring schemes. We also obtain the AMLEs of the reliability function.

Keywords

Approximate maximum likelihood estimator;exponentiated half logistic distribution;progressively Type-II censored sample;reliability;

Language

English

Cited by

1.

Estimation for generalized half logistic distribution based on records,;;;

2.

Estimation for Two-Parameter Generalized Exponential Distribution Based on Records,;;;

3.

Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring,;;;

4.

An Analysis of Record Statistics based on an Exponentiated Gumbel Model,;;;

5.

Bayesian analysis of an exponentiated half-logistic distribution under progressively type-II censoring,;;;

6.

Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution,;;

1.

2.

3.

4.

5.

6.

7.

References

1.

Alaboud, F. M. (2009). Bayesian estimations for the extreme value distribution using progressive censored data and asymmetric loss, International Mathematical Forum, 8, 1603-1622.

2.

Arora, S. H., Bhimani, G. C. and Patel, M. N. (2010). Some results on maximum likelihood estimators of parameters of generalized half logistic distribution under Type-I progressive censoring with changing, International Journal of Contemporary Mathematical Sciences, 5, 685-698.

3.

Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357.

4.

Balakrishnan, N. and Kannan, N. (2001). Point and interval estimation for the logistic distribution based on progressively Type-II censored samples, In Handbook of Statistics, Balakrishnan, N. and Rao, C. R., Eds., 20, 431-456.

5.

Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95.

6.

Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressively Type-II censoring, Journal of Statistical Computation and Simulation, 74, 25-45.

7.

Balakrishnan, N. and Puthenpura, N. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of Statistics and Computer Simulation, 25, 193-204.

8.

Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressively Type-II censored samples, The American Statistician, 49, 229-230.

9.

Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right censoring, IEEE Transactions on Reliability, 40, 140-145.

10.

Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378.

11.

Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823.

12.

Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066.

13.

Lee, H. J., Han, J. T. and Kang, S. B. (2008). Estimation for a triangular distribution based on multiply Type-II censored samples, Journal of Korean Data & Information Science Society, 19, 319-330.

14.

Lin, C. T., Wu, S. J. S. and Balakkrishnan, N. (2006). Inference for log- gamma distribution based on progressively Type-II censored data, Communication in Statistics-Theory and Methods, 35, 1271-1292.

15.

Nelson, W. B. (1982). Applied Life Data Analysis, John Willey & Sons, New York.