JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Relationship between Physical Fitness and Basic Skill Factors for KTA Players Using the Partial Cannonical Correlation Biplot Removing the Linear Effect of the Set of Covariate Variables and Procrustes Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Relationship between Physical Fitness and Basic Skill Factors for KTA Players Using the Partial Cannonical Correlation Biplot Removing the Linear Effect of the Set of Covariate Variables and Procrustes Analysis
Choi, Tae-Hoon; Choi, Yong-Seok;
  PDF(new window)
 Abstract
The generalized canonical correlation biplot is a 2-dimensional plot to graphically investigate the relationship between more than three sets of variables and the relationship between observations and variables. Recently, Choi and Choi (2010) investigated the relationship physique, physical fitness and basic skill factors of Korea Tennis Association(KTA) players of using this biplot; however we consider the set of covariate variables affecting the linearly on two sets of variables. In this case, if we apply the generalized canonical correlation biplot, we cannot clearly interpret the other two sets of variables due to the effect of the set of covariate variables. Moreover, Yeom and Choi (2011) provided partial canonical correlation analysis that removed the linear effect of the set of covariate variables on two sets of variables. In addition, Procrustes analysis is a useful tool for comparing shape between configurations. In this study, we will investigate the relationship between physical fitness and basic skill factors of KTA players of using a partial canonical correlation biplot and Procrustes analysis. We compare shapes and shape variabilities for the generalized, partial and simple canonical correlation biplots.
 Keywords
Biplot;partial canonical correlation analysis;tennis players;Procrustes analysis;
 Language
Korean
 Cited by
 References
1.
염아림, 최용석 (2011). 편정준상관 행렬도, <응용통계연구>, 24, 559-566.

2.
최용석 (2006). <행렬도분석>, 기초과학 총서 2권, 부산대학교 기초과학연구원.

3.
최용석, 현기홍 (2006). <통계적 형상분석의 이해와 응용-프로크러스티즈 분석의 저항성 버전 연구 및 개발->, 자유아카데미, 서울.

4.
최태훈, 최용석 (2008). 정준상관 행렬도와 군집분석을 응용한 KLPGA 선수의 기술과 경기성적요인에 대한 연관성분석, <응용통계연구>, 21, 429-439.

5.
최태훈, 최용석 (2010). 일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구, <한국통계학회논문집>, 17, 917-925.

6.
최태훈, 최용석, 신상민 (2009). 테니스그랜드슬램대회의 선수특성요인과 경기요인에 대한 분석연구- 정준상관 행렬도와 프로크러스티즈 분석의 응용-, <응용통계연구>, 22, 855-864.

7.
허명회 (1993). <統計相談의이해>, 자유아카데미, 서울.

8.
허명회 (1999). <다변량수량화>, 자유아카데미, 서울.

9.
홍현욱, 최용석, 신상민, 강창완 (2010). 결측값이 있는 정준상관행렬도의 형상변동 연구, <응용통계연구>, 23, 955-966.

10.
Choi, Y. S. (1991). Resistant Principal Component Analysis, Biplot and Correspondence Analysis, Unpublished Ph.D. Dissertation, Department of Statistics, Korea University.

11.
Choi, Y. S., Hyun, G. H. and Kim, J. G. (2005a). A numerical comparison of map variability in SCA Using the Procrustes Analysis, Journal of the Korean Data Analysis Society, 7, 1531-1538.

12.
Choi, Y. S., Hyun, G. H. and Yun, W. J. (2005b). Biplots' variability based on the Procrustes analysis, Journal of the Korean Data Analysis Society, 7, 1925-1933.

13.
Gabriel, K. R. (1971). The biplot graphics display of matrices with applications to principal component analysis, Biometrika, 58, 453-467. crossref(new window)

14.
Park, M. R. and Huh, M. H. (1996). Canonical correlation biplot, The Korea Communications in Statistics, 3, 11-19.

15.
Timm, N. H. (2002). Applied Multivariate Analysis, Springer, New York.