JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Influences of Dependence Degrees of a Component for the Mean Time to Failure of a System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influences of Dependence Degrees of a Component for the Mean Time to Failure of a System
Kim, Dae-Kyung; Oh, Ji-Eun;
  PDF(new window)
 Abstract
This article considers the mean time to failure(MTTF) of a dependent parallel system. We study how the degree of dependency components influences the increase in the mean lifetime for this system. The results are illustrated by tables and figures.
 Keywords
Dependent parallel system;Bivariate Weibull model;MTTF;
 Language
English
 Cited by
 References
1.
Balakrishnan, N. and Lai, C. D. (2009). Continuous Bivariate Distributions, Springer.

2.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151. crossref(new window)

3.
Esary, F. D. and Proschan, F. (1970). A reliability bound for systems of maintained interdependent components, Journal of the American Statistical Association, 65, 329-338. crossref(new window)

4.
Freund, J. E. (1961). A bivariate extension of the exponential distribution, Journal of the American Statistical Association, 56, 971-977. crossref(new window)

5.
Gumbel, E. J. (1960). Bivariate exponential distributions, Journal of the American Statistical Association, 56, 698-707.

6.
Hanagal, D. D. (1996). A multivariate Weibull distribution, Econ Qual Control, 11, 193-200.

7.
Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distribution - 1, Houghton Mifflin Company, Boston.

8.
Lehmann, E, L. (1966). Some concepts of dependence, Annals of Mathematical Statistics, 37, 1137-1153. crossref(new window)

9.
Lu, J. C. (1989). Weibull extension of the Freund and Marshall-Olkin bivariate exponential models, IEEE Transaction on Reliability, 38, 615-619. crossref(new window)

10.
Lu, J. C. and Bhattachrayya, G. K. (1990). Some new constructions of bivariate Weibull models, Annals of Institute of Statistical Mathematics, 42, 543-559. crossref(new window)

11.
Marshall, A. W. and Olkin, I. A. (1967). A multivariate exponential distribution, Journal of the American Statistical Association, 62, 30-44. crossref(new window)

12.
Mino, T., Yoshikawa, N., Suzuki, K., Horikawa, Y. and Abe, Y. (2003). The mean of lifespan under dependent competing risks with application to mice data, Journal of Health and Sports Science, Juntendo University, 7, 68-74.

13.
Moeschberger, M. L. (1974). Life tests under dependent competing causes of failure, Technometrics, 16, 39-47. crossref(new window)

14.
Murthy, D. N. P. and Nguyen, D. G. (1985). Study of two component system with Failure interaction, Naval Research Logistics Quarterly, 32, 239-247. crossref(new window)

15.
Rachev, S. T., Wu, C. and Yakovlev, A. Y. (1995). A bivariate limiting distribution of tumor latency time, Mathematical Biosciences, 127, 127-147. crossref(new window)