Advanced SearchSearch Tips
First Order Difference-Based Error Variance Estimator in Nonparametric Regression with a Single Outlier
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
First Order Difference-Based Error Variance Estimator in Nonparametric Regression with a Single Outlier
Park, Chun-Gun;
  PDF(new window)
We consider some statistical properties of the first order difference-based error variance estimator in nonparametric regression models with a single outlier. So far under an outlier(s) such difference-based estimators has been rarely discussed. We propose the first order difference-based estimator using the leave-one-out method to detect a single outlier and simulate the outlier detection in a nonparametric regression model with the single outlier. Moreover, the outlier detection works well. The results are promising even in nonparametric regression models with many outliers using some difference based estimators.
First order difference-based error variance estimator;leave-one-out;Lipschitz condition;Single outlier;
 Cited by
이상치가 존재하는 단순회귀모형에서 Rice 추정량에 관해서,박천건;

응용통계연구, 2013. vol.26. 3, pp.511-520 crossref(new window)
On Rice Estimator in Simple Regression Models with Outliers, Korean Journal of Applied Statistics, 2013, 26, 3, 511  crossref(new windwow)
Barbato, G., Barini, E. M., Genta, G., and Levi, R. (2011). Features and performance of some outlier detection methods, em Journal of Applied Statistics, 38, 2133-2149. crossref(new window)

Boente, G. and Fraiman, R. (1989). Robust nonparametric regression estimation for dependent observations, The Annals of Statistics, 17, 1242-1256. crossref(new window)

Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression, Journal of the Royal Statistical Society: Series B, 54, 773-780.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression? What is a reasonable choice?, Journal of the Royal Statistical Society: Series B, 60, 751-764. crossref(new window)

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression, Biometrika, 73, 625-633. crossref(new window)

Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: the effect of estimating the mean, Journal of the Royal Statistical Society: Series B, 51, 3-14.

Hall, P., Kay, J. W. and Titterinton, D. M. (1990). Asymptotically optimal difference-based estimator of variance in nonparametric regression, Biometrika, 77, 521-528. crossref(new window)

Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators, Statistics, 25, 189-212. crossref(new window)

Park, C. G. (2011). Estimation of error variance in nonparametric regression under a finite sample using ridge regression, Journal of Korean Data & Information Science Society, 22, 1223-1232.

Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of statistics, 12, 1215-1220. crossref(new window)

Tong, T. and Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares, Biometrika, 92, 821-830. crossref(new window)

Wahba, G. (1990). Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, 59, SIAM, Philadelphia.