JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution
Kim, Yong-Ku; Seo, Jung-In; Kang, Suk-Bok;
  PDF(new window)
 Abstract
The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.
 Keywords
Bayesian estimation;exponentiated inverse Weibull distribution;record statistics;
 Language
English
 Cited by
1.
Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values,;;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 3, pp.611-622 crossref(new window)
1.
Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values, Journal of the Korean Data and Information Science Society, 2014, 25, 3, 611  crossref(new windwow)
 References
1.
Ali, M., Pal, M. and Woo, J. (2007). Some exponentiated distributions, The Korean Communications in Statistics, 14, 93-109. crossref(new window)

2.
Balakrishnan, N., Ahsanullah, M. and Chan, P. S. (1992). Relations for single and product moments of record values from Gumbel distribution, Statistical and Probability Letters, 15, 223-227. crossref(new window)

3.
Calabria, R. and Pulcini, G. (1994). Bayes 2-sample prediction for the inverse Weibull distribution, Communications in Statistics - Theory and Methods, 23, 1811-1824. crossref(new window)

4.
Chandler, K. N. (1952). The distribution and frequency of record values, Journal of the Royal Statistical Society, Series B, 14, 220-228.

5.
Dumonceaux, R. and Antle, C. E. (1973). Discrimination between the lognormal and Weibull distribution, Technometrics, 15, 923-926. crossref(new window)

6.
Mahmoud, M. A. W., Sultan, K. S. and Amer, S. M. (2003). Order statistics from inverse Weibull distribution and associated inference, Computational Statistics & Data Analysis, 42, 149-163. crossref(new window)

7.
Maswadah, M. (2003). Conditional confidence interval estimation for the inverseWeibull distribution based on censored generalized order statistics, Journal of statistical Computation and Simulation, 73, 887-898. crossref(new window)

8.
Nelson, W. B. (1982). Applied Life Data Analysis, John Willey & Sons, New York.

9.
Soland, R. M. (1969). Bayesian analysis of Weibull process with unknown scale and shape parameters, IEEE Transaction on Reliability, 18, 181-184. crossref(new window)

10.
Soliman, A. A., Abd Ellah, A. H. and Sultan, K. S. (2006). Comparison of estimates using record statistics fromWeibull model: Bayesian and non-Bayesian approaches, Computational Statistics & Data Analysis, 51, 2065-2077. crossref(new window)

11.
Sultan, K. S. (2008). Bayesian estimates based on record values from the inverse Weibull lifetime model, Quality Technology & Quantitative Management, 5, 363-374.

12.
Thompson, R. D. and Basu, A. P. (1996). Asymmetric loss function for estimating system reliability, In Bayesian Analysis in Statistics and Econometrics, edited by Berry, D. A., Chaloner, K. M., and Geweke, J. K., Willey, 471-482.

13.
Varian, H. R. (1975). A Bayesian approach to real estate assessment, In Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, edited by S. E. Feinberg and A. Zellner, North Holland, Amsterdam, 195-208.

14.
Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function, Journal of American Statistical Association, 81, 446-451. crossref(new window)