Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring

- Journal title : Communications for Statistical Applications and Methods
- Volume 20, Issue 1, 2013, pp.63-75
- Publisher : The Korean Statistical Society
- DOI : 10.5351/CSAM.2013.20.1.063

Title & Authors

Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring

Seo, Jung-In; Kim, Yongku; Kang, Suk-Bok;

Seo, Jung-In; Kim, Yongku; Kang, Suk-Bok;

Abstract

In this paper, we derive maximum likelihood estimators (MLEs) and approximate maximum likelihood estimators (AMLEs) of unknown parameters in a generalized half logistic distribution under Type-II hybrid censoring. We also obtain approximate confidence intervals using asymptotic variance and covariance matrices based on the MLEs and the AMLEs. As an illustration, we examine the validity of the proposed estimation using real data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE), bias, and length of the approximate confidence interval through a Monte Carlo simulation for various censoring schemes.

Keywords

Approximate maximum likelihood estimator;generalized half logistic distribution;type-II hybrid censoring;

Language

English

Cited by

References

1.

Arora, S. H., Bhimani, G. C. and Patel, M. N. (2010). Some results on maximum likelihood estimators of parameters of generalized half logistic distribution under Type-I progressive censoring with changing, International Journal of Contemporary Mathematical Sciences, 5, 685-698.

2.

Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357.

3.

Balakrishnan, N. and Kannan, N. (2001). Point and interval estimation for the logistic distribution based on progressively Type-II censored samples, in Handbook of Statistics, Balakrishnan, N. and Rao, C. R., Eds. 20, 431-456.

4.

Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressively Type-II censoring, Journal of Statistical Computation and Simulation, 74, 25-45.

5.

Balakrishnan, N. and Puthenpura, N. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of Statistics and Computer Simulation, 25, 193-204.

6.

Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressively Type-II censored samples, The American Statistician, 49, 229-230.

7.

Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right censoring, IEEE Transactions on Reliability, 40, 140-145.

8.

Banerjee, A. and Kundu, D. (2008). Inference based on Type-II hybrid censored data from a Weibull Distribution, IEEE Transactions on Reliability, 57, 369-378.

9.

Childs, A., Chandrasekhar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330.

10.

Epstein, B. (1954). Truncated life tests in the exponential case, Annals of the Institute of Statistical Mathematics, 25, 555-564.

11.

Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378.

12.

Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823.

13.

Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066.

14.

Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half triangle distribution based on Type-I Hybrid Censored Sample, Journal of the Korean Data & Information Science Society, 20, 961-969.

15.

Kim, Y. K., Kang, S. B. and Seo, J. I. (2011a). Bayesian estimations on the exponentiated half triangle distribution under Type-I hybrid censoring, Journal of the Korean Data & Information Science Society, 22, 565-574.

16.

Kim, Y. K., Kang, S. B. and Seo, J. I. (2011b). Bayesian estimation in the generalized half logistic distribution under progressively Type-II censoring, Journal of the Korean Data & Information Science Society, 22, 977-987.

17.

Kundu, D. (2007). On hybrid censored Weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142.

18.

Lin, C. T., Wu, S. J. S. and Balakrishnan, N. (2006). Inference for log-gamma distribution based on progressively Type-II censored data, Communication in Statistics-Theory and Methods, 35, 1271-1292.

19.

Nelson, W. B. (1982). Applied Life Data Analysis, John Willey & Sons, New York.