JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models
Lee, Keunbaik;
  PDF(new window)
 Abstract
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the positive definiteness; subsequently, we practically use the simple structure of the covariance matrix such as AR(1). However, this strong assumption can result in biased estimates of the fixed effects. In this paper, we introduce Bayesian modeling approaches for the random effects covariance matrix using a modified Cholesky decomposition. The modified Cholesky decomposition approach has been used to explain a heterogenous random effects covariance matrix and the subsequent estimated covariance matrix will be positive definite. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using these methods.
 Keywords
Modified Cholesky decomposition;heterogeneity;Positive definiteness;
 Language
English
 Cited by
1.
영과잉 경시적 가산자료 분석을 위한 허들모형,진익태;이근백;

응용통계연구, 2014. vol.27. 6, pp.923-932 crossref(new window)
2.
일반화 선형혼합모형의 임의효과 공분산행렬을 위한 모형들의 조사 및 고찰,김지영;이근백;

응용통계연구, 2015. vol.28. 2, pp.211-219 crossref(new window)
1.
Survey of Models for Random Effects Covariance Matrix in Generalized Linear Mixed Model, Korean Journal of Applied Statistics, 2015, 28, 2, 211  crossref(new windwow)
2.
Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis, Korean Journal of Applied Statistics, 2014, 27, 6, 923  crossref(new windwow)
3.
Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics & Data Analysis, 2014, 80, 111  crossref(new windwow)
 References
1.
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.

2.
Celeux, G., Forbes, F., Robert, C. P. and Titterington, D. M. (2006). Deviance information criteria for missing data models, Bayesian Analysis, 1, 651-674. crossref(new window)

3.
Daniels, M. J. and Hogan, J.W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis, Chapman & Hall/CRC.

4.
Daniels, J. M. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. crossref(new window)

5.
Daniels, J. M. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. crossref(new window)

6.
Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalized linear mixed models, Biometrika, 88, 973-985. crossref(new window)

7.
Kim, J., Kim, E., Yi, H., Joo, S., Shin, K., Kim, J., Kim, K. and Shin, C. (2006). Short-term incidence rate of hypertension in Korea middle-aged adults, Journal of Hypertension, 24, 2177-2182. crossref(new window)

8.
Lee, K., Yoo, J. K., Lee, J. and Hagan, J. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. crossref(new window)

9.
Pan, J. and Mackenzie, G. (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. crossref(new window)

10.
Pan, J. and Mackenzie, G. (2006). Regression models for covariance structures in longitudinal studies, Statistical Modelling, 6, 43-57. crossref(new window)

11.
Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika, 86, 677-690. crossref(new window)

12.
Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. crossref(new window)

13.
Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data, Biometrics, 58, 225-231. crossref(new window)

14.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B: Statistical Methodology, 64, 583-616. crossref(new window)