JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Class of Estimators for Population Variance in Two Occasion Rotation Patterns
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Class of Estimators for Population Variance in Two Occasion Rotation Patterns
Singh, G.N.; Priyanka, Priyanka; Prasad, Shakti; Singh, Sarjinder; Kim, Jong-Min;
  PDF(new window)
 Abstract
A variety of practical problems can be addressed in the framework of rotation (successive) sampling. The present work presents a sample rotation pattern where sampling units are drawn on two successive occasions. The problem of estimation of population variance on current (second) occasion in two - occasion successive (rotation) sampling has been considered. A class of estimators has been proposed for population variance that includes many estimators as a particular case. Asymptotic properties of the proposed class of estimators are discussed. The proposed class of estimators is compared with the sample variance estimator when there is no matching from the previous occasion. Optimum replacement policy is discussed. Results are supported with the empirical means of comparison.
 Keywords
Successive (rotation) sampling;variance estimation;bias;mean square error;optimum replacement policy;
 Language
English
 Cited by
1.
Effectual Variance Estimation Strategy in Two Occasions Successive Sampling in Presence of Random Non-Response, Communications in Statistics - Theory and Methods, 2016, 00  crossref(new windwow)
2.
A fresh approach for Intercession of Non-Response in Multivariate Longitudinal Designs, Communications in Statistics - Theory and Methods, 2016, 00  crossref(new windwow)
3.
Searching effective rotation patterns for population median using exponential type estimators in two-occasion rotation sampling, Communications in Statistics - Theory and Methods, 2016, 45, 18, 5443  crossref(new windwow)
 References
1.
Biradar, R. S. and Singh, H. P. (2001). Successive sampling using auxiliary information on both occasions, Calcutta Statistical Association Bulletin, 51, 243-251.

2.
Chaturvedi, D. K. and Tripathi, T. P. (1983). Estimation of population ratio on two occasions using multivariate auxiliary information, Journal of Indian Statistical Association, 21, 113-120.

3.
Das, A. K. (1982). Estimation of population ratio on two occasions, Journal of the Indian Society of Agricultural Statistics, 34, 1-9.

4.
Feng, S. and Zou, G. (1997). Sample rotation method with auxiliary variable, Communications in Statistics-Theory and Methods, 26, 1497-1509. crossref(new window)

5.
Gupta, P. C. (1979). Sampling on two successive occasions, Journal of Statistical Research, 13, 7-16.

6.
Isaki, C. T. (1983). Variance estimation using auxiliary information, Journal of the American Statistical Association, 78, 117-123. crossref(new window)

7.
Jessen, R. J. (1942). Statistical Investigation of a Sample Survey for obtaining farm facts, Iowa Agricultural Experiment Station Research Bulletin, 304, 1-104, Ames, Iowa, USA.

8.
Patterson, H. D. (1950). Sampling on successive occasions with partial replacement of units, Journal of the Royal Statistical Society, 12, 241-255.

9.
Rao, J. N. K. and Graham, J. E. (1964). Rotation design for sampling on repeated occasions, Journal of the American Statistical Association, 59, 492-509. crossref(new window)

10.
Sen, A. R. (1971). Successive sampling with two auxiliary variables, Sankhya, 33, Series B, 371-378.

11.
Sen, A. R. (1972). Successive sampling with p (p ${\geq}$ 1) auxiliary variables, The Annals of Mathematical Statistics, 43, 2031-2034. crossref(new window)

12.
Sen, A. R. (1973). Theory and application of sampling on repeated occasions with several auxiliary variables, Biometrics, 29, 381-385. crossref(new window)

13.
Shukla, D. (1988). On some factor-type estimators for population parameters in sample surveys, Unpublished Ph.D. Dissertation, Banaras Hindu University, Varanasi, India.