Advanced SearchSearch Tips
Analysis of Reserves in Multiple Life Insurance using Copula
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Reserves in Multiple Life Insurance using Copula
Lee, Issac; Lee, Hangsuck; Kim, Hyun Tae;
  PDF(new window)
We study the dependence between the insureds in multiple-life insurance contracts. With the future lifetimes of the insureds modeled as correlated random variables, both premium and reserve are different from those under independence. In this paper, Gaussian copula is used to impose the dependence between the insureds with Gompertz marginals. We analyze the change of the reserves of standard multiple-life insurance contracts at various dependence levels. We find that the reserves based on the assumption of dependent lifetimes are quite different for some contracts from those under independence as its correlation increase, which elucidate the importance of the dependence model in multiple-life contingencies in both theory and practice.
Gaussian copula;reserves analysis;multiple life insurance;joint life survival function;
 Cited by
코퓰라와 커먼-쇽을 이용한 연생상품의 분석,김도영;이삭;이항석;

응용통계연구, 2014. vol.27. 7, pp.1097-1114 crossref(new window)
Analysis of Multiple Life Insurance using Copula and Common Shock, Korean Journal of Applied Statistics, 2014, 27, 7, 1097  crossref(new windwow)
Consideration of a structural-change point in the chain-ladder method, Communications for Statistical Applications and Methods, 2017, 24, 3, 211  crossref(new windwow)
Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A. and Nesbitt, C. J. (1997). Actuarial Mathematics, Society of Actuaries, Schaumburg (Ill).

Carriere, J. F. (1994). An investigation of the Gompertz law of mortality, Actuarial Research Clearing House, 2, 161-177.

Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance, John Wiley & Sons, Hoboken, NJ.

de Jong, P. (2012). Modeling dependence between loss triangles, North American Actuarial Journal, 16, 74-86. crossref(new window)

Dickson, D. C. M., Hardy, M. R. andWaters, H. R. (2009). Actuarial Mathematics for Life Contingent Risks, Cambridge University Press, Cambridge, UK.

Fang, H.-B., Fang, K.-T. and Kotz, S. (2002). The meta-elliptical distributions with given marginals, Journal of Multivariate Analysis, 82, 1-16. crossref(new window)

Frees, E. W., Carriere, J, and Emiliano, V. (1996). Annuity Valuation with Dependent Mortality, The Journal of Risk and Insurance, 63, 229-261. crossref(new window)

Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copula, North American Actuarial Journal, 2, 1-25.

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2010). Loss Models: From Data to Decisions, Wiley, New York.

Kruskal, W. H. (1958). Ordinal measures of association, Journal of the American Statistical Association, 53, 814-861. crossref(new window)

Lee, S., Baek, H.-Y. and Lee, H. (2013). Analysis of multiple life insurance using copula, Journal of the Korean Data Analysis Society, 15, 1933-1954.

Li, D. X. (2000). On default correlation: A copula function approach, Journal of Fixed Income, 9, 43-54. crossref(new window)

Nelsen, R. B. (2006). An Introduction to Copulas, Springer, New York.

Onken, A., Grunewalder, S., Munk, M. H. J. and Obermayer, K. (2009). Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight trans-formation, PLOS Computational Biology, 5, e10000577.

Ross, S. M. (2006). A First Course in Probability, Pearson Prentice Hall, Upper Saddle River, NJ.

Scholzel, C. and Friederichs, P. (2008). Multivariate non-normally distributed random variables in climate research-introduction to the copula approach, Nonlinear Processes in Geophysics, 15, 761-772. crossref(new window)

Shemyakin, A. E. and Youn, H. (2006). Copula models of joint last survivor analysis, Applied Stochastic Models in Business and Industry, 22, 211-224. crossref(new window)

Shi, P. and Frees, E. W. (2011). Dependent loss reserving using copulas, Journal of the International Actuarial Association, 41, 449-486.

Simonic, A. (1990). Grupe Operatorjev s Pozitivnim Spektrom, Univerza v Ljubljani, FNT, Oddelek za Matematiko,

Sklar, A. (1973). Random variables, joint distribution functions, and copulas, Kybernetika, 9, 449-460.

Wang, S. S. (1998). Discussions of papers already published, North American Actuarial Journal, 3, 137-141.

Youn, H., Shemyakin, A. and Herman, E. (2002). A Re-examination of the joint mortality functions, North American Actuarial Journal, 6, 166-170. crossref(new window)

Zhang, L. and Singh, V. P. (2006). Bivariate flood frequency analysis using the copula method, Journal of Hydrologic Engineering, 11, 150-164. crossref(new window)