Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution

- Journal title : Communications for Statistical Applications and Methods
- Volume 21, Issue 1, 2014, pp.93-103
- Publisher : The Korean Statistical Society
- DOI : 10.5351/CSAM.2014.21.1.093

Title & Authors

Predictions for Progressively Type-II Censored Failure Times from the Half Triangle Distribution

Seo, Jung-In; Kang, Suk-Bok;

Seo, Jung-In; Kang, Suk-Bok;

Abstract

This paper deals with the problem of predicting censored data in a half triangle distribution with an unknown parameter based on progressively Type-II censored samples. We derive maximum likelihood predictors and some approximate maximum likelihood predictors of censored failure times in a progressively Type-II censoring scheme. In addition, we construct the shortest-length predictive intervals for censored failure times. Finally, Monte Carlo simulations are used to assess the validity of the proposed methods.

Keywords

Approximate maximum likelihood predictor;Approximate predictive maximum likelihood estimator;Half triangle distribution;Prediction interval;Progressively Type-II censored sample;

Language

English

Cited by

References

1.

Asgharzadeh, A. and Valiollahi, R. (2010). Prediction intervals for proportional hazard rate models based on progressively Type-II censored samples, Communications of the Korean Statistical Society, 17, 99-106.

2.

Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distribution, John Willey & Stone, New York.

3.

Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progres-sive Type-II censored samples, The American Statistician, 49, 229-230.

4.

Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples, IEEE Transactions on Reliability, 52, 90-95.

5.

Basak, I. and Balakrishnan, N. (2009). Predictors of failure times of censored units in progressively censored samples form normal distribution, Sankhya Series B, Part 2, 71, 222-247.

6.

Han, J. T. and Kang, S. B. (2008). Estimation for the half triangle distribution based on progressively Type-II censored samples, Journal of the Korean Data & Information Science Society, 19, 951-957.

7.

Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398.

8.

Juola, R. C. (1993). More on shortest confidence intervals, The American Statistician, 47, 117-119.

9.

Kang, S. B. (2007). Estimation in a half triangle distribution based on multiply Type-II censored samples, Journal of the Korean Data & Information Science Society, 18, 793-801.

10.

Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823.

11.

Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half triangle distribution based on Type-I hybrid censored samples, Journal of the Korean Data & Information Science Society, 20, 961-969.