Advanced SearchSearch Tips
A Berry-Esseen Type Bound in Kernel Density Estimation for a Random Left-Truncation Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Berry-Esseen Type Bound in Kernel Density Estimation for a Random Left-Truncation Model
Asghari, P.; Fakoor, V.; Sarmad, M.;
  PDF(new window)
In this paper we derive a Berry-Esseen type bound for the kernel density estimator of a random left truncated model, in which each datum (Y) is randomly left truncated and is sampled if , where T is the truncation random variable with an unknown distribution. This unknown distribution is estimated with the Lynden-Bell estimator. In particular the normal approximation rate, by choice of the bandwidth, is shown to be close to modulo logarithmic term. We have also investigated this normal approximation rate via a simulation study.
Asymptotic normality;Berry-Esseen;kernel density estimation;rate of convergence;left-truncation;
 Cited by
Birkel, T. (1988). On the convergence rate in the central limit theorem for associated processes, The Annals of Probability, 16, 1685-1698. crossref(new window)

Chang, M. N. and Rao, P. V. (1989). Berry-Esseen bound for the Kaplan-Meier estimator, Communications in Statistics - Theory Methods, 18, 4647-4664. crossref(new window)

Chen, G. (1997). Berry-Esseen-type bounds for the kernel estimator of conditional distribution and conditional quantiles, Journal of Statistical Planning and Inference, 60, 311-330. crossref(new window)

Cheng, C. (1998). A Berry-Esseen-type theorem of quantile density estimators, Statistics and Probability Letters, 39, 255-262. crossref(new window)

Dewan, I. and Prakasa Rao, B. L. S. (2002). Non-uniform and uniform Berry-Esseen type bounds for stationary associated sequences, Indian Statistical Institute.

He, S. and Yang, G. L. (1998). Estimation of the truncation probability in the random truncation model, The Annals of Statistics, 26, 1011-1028. crossref(new window)

Huang, C., Wang, H. and Zhang, L. (2011). Berry-Esseen bounds for kernel estimates of stationary processes, Journal of Statistical Planning and Inference, 141, 1290-1296. crossref(new window)

Isogai, E. (1994). A Berry-Esseen-type bound for recursive estimators of a density and its derivatives, Journal of Statistical Planning and Inference, 40, 1-14. crossref(new window)

Liang, H. and Baek, J. (2008). Berry-Esseen bounds for density estimates under NA assumption, Metrika, 68, 305-322. crossref(new window)

Liang, H. Y. and Una-Alvarez, J. (2009). A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples, Journal of Multivariate Analysis, 100, 1219-1231. crossref(new window)

Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars, Monthly Notices of the Royal Astronomical Society, 155, 95-118.

Ould-Said, E. and Tatachak, A. (2009). On the non-parametric estimation of the simple mode under random left-truncation model, Revue Roumaine de Mathematiques Pures et Appliquees, 54, 243-266.

Petrov, V. V. (1995). Limit Theorems of Probability Theory, Oxford University Press Inc., New York.

Prakasa Rao, B. L. S. (1975). Berry-Esseen type bound for density estimation of stationary Markov processes, Indian Statistical Institute, 15-21.

Sun, L. and Zhu, L. (1999). A Berry-Esseen type bound for Kernel Density Estimators under Random Censorship, Acta Mathematica Sinica, 42, 627-636.

Woodroofe, M. (1985). Estimating a distribution function with truncated data, The Annals of Statistics, 13, 163-177. crossref(new window)

Yang, W., Hu, S., Wang, X. and Ling, N. (2012). The Berry-Esseen type bound of sample quantiles for strong mixing sequence, Journal of Statistical Planning and Inference, 142, 660-672. crossref(new window)

Zhou, Y., Wu, G. and Li, D. (2006). A kernel-type estimator of a quantile function under randomly truncated data, Acta Mathematica Scientia, 26B, 585-594.