JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of Median in the Presence of Three Known Quartiles of an Auxiliary Variable
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Median in the Presence of Three Known Quartiles of an Auxiliary Variable
Singh, Housila P.; Shanmugam, Ramalingam; Singh, Sarjinder; Kim, Jong-Min;
  PDF(new window)
 Abstract
This paper has improved several ratio type estimators of the population median including their generalization in the presence of three known quartiles of an auxiliary variable. The properties of the improved estimators are discussed and applied. Both the empirical and simulation studies confirm that our new estimators perform efficiently.
 Keywords
Population median;variance;auxiliary variable;quartiles;
 Language
English
 Cited by
 References
1.
Allen, J., Singh, H. P., Singh, S. and Smarandache, F. (2002). A General Class of Estimators of Population Median Using Two Auxiliary Variables in Double Sampling, In Randomness and Optimal Estimation in Data Sampling, Amer. Res. Press, Rehoboth, New Mexico, USA 26-43.

2.
Arcos, A., Rueda, M. and Martinez-Miranda, M. D. (2005). Using multiparametric auxiliary information at the estimation stage, Statistical Papers, 46, 339-358. crossref(new window)

3.
Chambers, R. L. and Dustan, R. (1986). Estimating distribution functions from survey data, Biometrika, 73, 597-604. crossref(new window)

4.
Cochran, W. G. (1963). Sampling Techniques, John Wiley and Sons, New York.

5.
Garcia, M. R. and Cebrian, A. A. (2001). On estimating the median from survey data using multiple auxiliary information, Metrika, 59-76.

6.
Gross, T. S. (1980). Median estimation in sample surveys, Proc. Surv. Res. Meth. Sect. Amer. Statist. Ass., 181-184.

7.
Kuk, A. Y. C. and Mak, T. K. (1989). Median estimation in the presence of auxiliary information, J. Roy. Statist. Soc., B, 51, 261-269.

8.
Mak, T. K. and Kuk, A. Y. C. (1993). A new method for estimating finite population quantiles using auxiliary information, Canadian J. Staist., 21, 29-38. crossref(new window)

9.
Meeden, G. (1995). Median estimation using auxiliary information, Survey Methodology, 21, 71-77.

10.
Meeden, G. and Vardeman, S. (1991). A noninformative Bayesian approach to interval estimation in finite population sampling, J. Amer. Statist. Assoc., 86, 972-980. crossref(new window)

11.
Rao, J. N. K., Kovar, J. G. and Mantel, H. J. (1990). On estimating distribution functions and quantiles from survey data using auxiliary information, Biometrika, 77, 365-375. crossref(new window)

12.
Rueda, M. M., Arcos, A., Martinez-Miranda, M. D. and Roman, Y. (2004). Some improved estimators of finite population quantile using auxiliary information in sample surveys, Computational Statistics and Data Analysis, Elsevier, 45, 825-848. crossref(new window)

13.
Rueda, M. D. M. and Arcos, A. (2002). The use of quantiles of auxiliary variables to estimate medians, Biom. J., 44, 619-632. crossref(new window)

14.
Rueda, M., Arcos, A., Gonzalez-Aguilera, S., Martinez-Miranda, M. D., Roman, Y. and Martinez-Puertas, S. (2005). Ratio methods to the mean estimation with known quantiles, App. Math. Compu., 170, 1031-1044. crossref(new window)

15.
Sharma, P. And Singh, R. (2014). Generalized class of estimators for population median using auxiliary information, Hec. Journal of Math and Stat., In press.

16.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman & Hall, London.

17.
Singh, H. P., Chandra, P., Joarder, A. H. and Singh, S. (2007). Family of estimators of mean, ratio and product of a finite population using random non response, Test, 16, 565-597. crossref(new window)

18.
Singh, H. P., Sidhu, S. S. and Singh, S. (2006). Median estimation with known interquartile range of auxiliary variable, Int. J. Appl. Math. Stat, March Issue, 68-80.

19.
Singh, H. P., Singh, S. and Puertas, S. P. (2006). Estimation of interquartile range of the study variable using the known interquartile range of auxiliary variable, Int. J. Appl. Math. Stat., 6, 33-47.

20.
Singh, H. P., Singh, S. and Puetas, S. M. (2003). Ratio type estimators for the median of finite populations, Allgemeines Statistiches Archiv., 369-382.

21.
Singh, H. P., Tailor, R., Singh, S. and Kim, J. M. (2007). Quartile estimation in successive sampling, Journal of the Korean Statistical Society, 36, 543-556.

22.
Singh, H. P. and Solanki, R. S. (2013). Some classes of estimators for the population median using auxiliary information, Communications in Statistics-Theory and Methods, 42, 4222-4238. crossref(new window)

23.
Singh, S., Joarder, A. H. and Tracy, D. S. (2001). Median estimation using double sampling, Aust. & New Zealand J. Statist., 43, 33-46. crossref(new window)

24.
Singh, S. and Puertas, S. M. (2003). On the estimation of total, mean and distribution function using two-phase sampling: Calibration approach, Jour. Ind. Soc. Ag. Stat., 56, 237-252.

25.
Singh, S., Singh, H. P. and Upadhayaya, L. N. (2007). Chain ratio and regression type estimators for median estimation in survey sampling, Statistical Papers, 48, 23-46. crossref(new window)

26.
Srivastava, S. K. and Jhajj, H. S. (1981). A class of estimators of the population mean in survey sampling using auxiliary information, Biometrika, 68, 341-343 crossref(new window)