Advanced SearchSearch Tips
Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness
Kyoung, Yujung; Lee, Keunbaik;
  PDF(new window)
In longitudinal studies missing data are common and require a complicated analysis. There are two popular modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models (GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.
pattern mixture model;nonignorable missing;sensitivity analysis;binary data;
 Cited by
Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.

Daniels, M. and Hogan, J. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, TEST, 18, 51-58.

Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out, Statistics in Medicine, 22, 1113-1121. crossref(new window)

Diggle, J. and Kenward, M. (1994). Informative dropout in longitudinal data analysis, Journal of the Royal Statistical Society, 43, 49-93.

Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman & Hall, London.

Gelfand, A. and Ghosh, S. (1998). Model choice: A minimum posterior predictive loss approach, Biometrika, 53, 1527-1537.

Gelman, A., Carlin, J., Stern, H. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd Edition, Chapman & Hall, London, UK, 1995.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57, 97-109. crossref(new window)

Heckman, J. J. (1974). Shadow wages, market wages and labor supply, Econometrica, 42, 679-693. crossref(new window)

Hogan, J. and Laird, N. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data, Statistics in Medicine, 16, 259-272. crossref(new window)

Kenward, M. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data, Statistical Methods in Medical Research, 8, 51. crossref(new window)

Kim, J., Kim, E., Yi, H., Joo, S., Shin, K., Kim, J., Kimm, K. and Shin, C. (2006). Short-term incidence rate of hypertension in Korea middle-aged adults, Journal of Hypertension, 24, 2177-2182. crossref(new window)

Lee, K., Daniels, M. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. crossref(new window)

Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies, Journal of the American Statistical Association, 90, 1112-1121. crossref(new window)

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd edition, John Wiley, New York.

Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies, Wiley.

Rubin, D. B. (1976). Inference and missing data, Biometrika, 63, 581-590. crossref(new window)

Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys, Journal of the American Statistical Association, 72, 538-543. crossref(new window)

Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models, Journal of the American Statistical Association, 94, 448.

Spiegelhalter, D. J., Best, N., Carlin, B. and van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-640, 651-653, 655, 658, 661, 671. crossref(new window)