JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Nonignorable Nonresponse Imputation and Rotation Group Bias Estimation on the Rotation Sample Survey
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nonignorable Nonresponse Imputation and Rotation Group Bias Estimation on the Rotation Sample Survey
Choi, Bo-Seung; Kim, Dae-Young; Kim, Kee-Whan; Park, You-Sung;
  PDF(new window)
 Abstract
We propose proper methods to impute the item nonresponse in 4-8-4 rotation sample survey. We consider nonignorable nonresponse mechanism that can happen when survey deals with sensitive question (e.g. income, labor force). We utilize modeling imputation method based on Bayesian approach to avoid a boundary solution problem. We also estimate a interview time bias using imputed data and calculate cell expectation and marginal probability on fixed time after removing estimated bias. We compare the mean squared errors and bias between maximum likelihood method and Bayesian methods using simulation studies.
 Keywords
Imputation;nonignorable nonresponse;rotation sampling survey;EM algorithm;
 Language
Korean
 Cited by
1.
무응답을 가지고 있는 범주형 자료에 대한 모형 선택 방법,윤용화;최보승;

Journal of the Korean Data and Information Science Society, 2012. vol.23. 4, pp.627-641 crossref(new window)
2.
무응답모형에 기반한 출구조사의 예측 정확성 비교 연구,곽정애;최보승;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 1, pp.53-64 crossref(new window)
3.
경험적 베이지안 방법을 이용한 결측자료 연구,윤용화;최보승;

응용통계연구, 2014. vol.27. 6, pp.1003-1016 crossref(new window)
1.
Model selection method for categorical data with non-response, Journal of the Korean Data and Information Science Society, 2012, 23, 4, 627  crossref(new windwow)
2.
Analysis of Missing Data Using an Empirical Bayesian Method, Korean Journal of Applied Statistics, 2014, 27, 6, 1003  crossref(new windwow)
3.
A comparison study for accuracy of exit poll based on nonresponse model, Journal of the Korean Data and Information Science Society, 2014, 25, 1, 53  crossref(new windwow)
 References
1.
박태성, 이승연(1998). 무응답을 포함하는 범주형 자료의 분석, <응용통계연구>, 11, 83-95

2.
최보승, 박유성, 이동희 (2007). 무시할 수 없는 무응답을 갖는 예비조사자료를 이용한 선서 예측, Journal of the Korean Data Analysis Society, 6, 785-794

3.
Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse, Journal of the American Statistical Association, 83, 62-69 crossref(new window)

4.
Bishop, Y. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge

5.
onetti, M., Cole, B. F. and Gelber, R. D. (1999). A method-of-moments estimation procedure for categorical quality-of-life data with nonignorable missingness, Journal of the American Statistical Association, 94, 1025-1034 crossref(new window)

6.
Choi, B. (2005). Bayesian analysis for incomplete two-way categorical table with nonignorable nonresponse, unpublished Ph.D dissertation, Korea University, Dept. of Statistics.

7.
Clogg, C. C., Rubin, D. B., Schenker, N., Schultz, B. and Weidman, L. (1991). Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression, Journal of the American Statistical Association, 86, 68-78 crossref(new window)

8.
Conaway, M. R. (1992). The Analysis of repeated categorical measurement subject to nonignorable nonresponse, Journal of the American Statistical Association, 87, 817-824 crossref(new window)

9.
David, M., Little, R. J. A., Samuhel, M. E. and Triest, R. K. (1986). Alternative methods for CPS income imputation, Journal of the American Statistical Association, 81, 29-41 crossref(new window)

10.
Dempster, A. P., Laird, N. M. and Rubin, D. M. (1977). Maximum likelihood from incom- plete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, 39, 1-38

11.
Fienberg, S. E. and Stasny, E. A. (1983). Estimating monthly gross flows in labour force Participation, Survey Methodology, 9, 77-102.

12.
Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd edition, John Wiley & Sons, New York

13.
Park, T. and Brown, M. B. (1994). Models for categorical data with nonignorable nonresponse, Journal of the American Statistical Association, 89, 44-52 crossref(new window)

14.
Paul, E. C. and Lawes, M. (1982). Characteristics of respondent and nonrespondent house- holds in the Canadian labour force survey, Survey Methodology, 8, 48-85.

15.
Smith, P. W. F., Skinner, C. J. and Clarke, P. S. (1999). Allowing for nonignorable nonresponse in the analysis of voting intension data, Applied Statistics, 48, 563-577

16.
Stasny, E. A. (1986). Estimating gross flows using panel data with nonresponse: An example from the Canadian labour force survey, Journal of the American Statistical Association, 81, 42-47 crossref(new window)

17.
Stasny, E. A. (1991). Hierarchical models for the probabilities of a survey classification and nonresponse: An example from the national crime survey, Journal of the American Statistical Association, 86, 296-303 crossref(new window)